Nuclear structure of 29-34Mg isotopes toward neutron dripline have been investigated using shell model with Skyrme-Hartree–Fock calculations. In particular nuclear densities for proton, neutron, mass and charge densities with their corresponding rms radii, neutron skin thicknesses and inelastic electron scattering form factors are calculated for positive low-lying states. The deduced results are discussed for the transverse form factor and compared with the available experimental data. It has been confirmed that the combining shell model with Hartree-Fock mean field method with Skyrme interaction can accommodate very well the nuclear excitation properties and can reach a highly descriptive and predictive power when investigating different nuclear configurations of stable and unstable nuclei.
Summary of the research in English:
the research seeks to define the provisions of voluntary charity and some of its contemporary applications, so the research is after the definition of charity and voluntary charity, define the provisions of the Most important thing charity, where the one who is given charity, in the introduction, he talked about the importance of charity in social solidarity,As for the first topic ,it deait with a statement and definition of charity in the Quran,sunnah and comparative juris prudence,whil the second topic was conducted with clarifying the provisions of the ratified, the ratified,while the third topic was concerned with clarifying the application of voluntary charity contemporary investing the Mo
... Show MoreDynamic Thermal Management (DTM) emerged as a solution to address the reliability challenges with thermal hotspots and unbalanced temperatures. DTM efficiency is highly affected by the accuracy of the temperature information presented to the DTM manager. This work aims to investigate the effect of inaccuracy caused by the deep sub-micron (DSM) noise during the transmission of temperature information to the manager on DTM efficiency. A simulation framework has been developed and results show up to 38% DTM performance degradation and 18% unattended cycles in emergency temperature under DSM noise. The finding highlights the importance of further research in providing reliable on-chip data transmission in DTM application.
The zeolite's textural properties have a significant effect on zeolite's effectiveness in the different industrial processes. This research aimed to study the textual properties of the NaX and FeX zeolites using the nitrogen adsorption-desorption technique at a constant low temperature. According to the International Union of Pure and Applied Chemistry, the adsorption-desorption isotherm showed that the studied materials were mixed kinds I/II isotherms and H3 type hysteresis. The Brunauer-Emmett-Teller isotherm was the best model to describe the nitrogen adsorption-desorption better than the Langmuir and Freundlich isotherms. The obtained adsorption capacity and Brunauer-Emmett-Teller surface area values for NaX were greater than FeX. Ac
... Show More
The research aims to identify the factors that affect the quality of the product by using the Failure Mode and Effect Analysis (FMEA) tool and to suggest measures to reduce the deviations or defects in the production process. I used the case study approach to reach its goals, and the air filter product line was chosen in the air filters factory of Al-Zawraa General Company. The research sample was due to the emergence of many defects of different impact and the continuing demand for the product. I collected data and information from the factory records for two years (2018-2019) and used a scheme Pareto Fishbone Diagram as well as an FMEA tool to analyze data and generate results.
Par
... Show MoreThe paper include study the effect thickness of the polymeric sample which is manufactured by thermo press way. The sample was used as an active tunable R6G laser media. The remarks show that, when the thickness of the samples is increased, with the same concentration, the spectrum will shift towards the short wavelength, & the quantum fluorescence yield will increased. The best result we obtained for the quantum fluorescence yield is (0.68) at the sample, with thickness (0.304mm) in Ethanol solvent, while when we used the Pure Water as a solvent, we found that the best quantum fluorescence yield is (0.63) at (0.18mm) thickness of the sample.
The paper include studies the effect of solvent of dye doped in polymeric laser sample which manufactured in primo press way, which is used as an active (R6G) tunable dye lasers. The remarks show that, when the viscosity of the solvent (from Pure Water to Ethanol), for the same concentration and thickness of the performance polymeric sample is increased, the absorption spectrum is shifts towards the long wave length (red shift), & towards short wave length (blue shift) for fluorescence spectrum, also increased the quantum fluorescence yield. The best result we obtained for the quantum fluorescence yield is (0.882) with thickness (0.25mm) in Ethanol solvent in concentration (2*10-3mole/liter), while when we used the Pure Water as a solvent,
... Show MoreWe discussed the proper preparation, directing, and implementation of physical education lessons, and clarification of the duties that fall upon the physical education teacher in addition to his physical and skill duties, which is the duty of the physical education lesson. The problem of the research lies in the fact that interactive harmonic exercises are not implemented accurately by physical education teachers because they require great experience, exceptional efforts, and accuracy in performance. The research aims to identify the level of some physical and motor abilities and intelligence among students aged (9-10) years, and to know the effect of some harmonic exercises. Interactivity at the level of some physical and motor abi
... Show MoreIn this work, InSe thin films were deposited on glass substrates by thermal evaporation technique with a deposit rate of (2.5∓0.2) nm/sec. The thickness of the films was around (300∓10) nm, and the thin films were annealed at (100, 200 and 300)°C. The structural, morphology, and optical properties of Indium selenide thin films were studied using X-ray diffraction, Scanning Electron Microscope and UV–Visible spectrometry respectively. X-ray diffraction analyses showed that the as deposited thin films have amorphous structures. At annealing temperature of 100°C and 200°C, the films show enhanced crystalline nature, but at 300°C the film shows a polycrystalline structure with Rhombohedral phas