The natural polyphenolic compound that cinnamon contains is well known for its various biological activities, a broad variety of pharmacological and therapeutic properties. Diversified biomedical and pharmacological applications benefit from organic nanoparticles with controlled properties. Bioactive and non-toxic, cinnamon nanoparticles (CNPs) can be effective antibacterial agents. Driven by this idea, we prepared spherical CNPs using liquid (PLAL) pulse laser ablation technique and defined those NPs. Using Q-switched Nd : YAG With a wavelength of 1064 nm pulse laser of constant energy 500 mj , And different laser pulses ( 250 , 500 , 750 , 1000 ) pulse /sec a pure cinnamon target submerged in liquid ethanol (5 mL) was ablated. The results on the composition, morphology and optical properties of as-grown CNPs of differing laser fluence were determined. Samples were described through Fe-SEM , UV-Vis , FTIR , The synergy between ethanol as liquid growth media and fundamental laser wavelength has been due to certain distinctive characteristics of CNPs. It has been developed that the spherical CNPs achieved in the suspension of ethanol could be beneficial for antioxidant purposes.
This study aimed to determine the effect of green bismuth oxide (BiO) NPs against multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) from wound infections. Among 450 wound samples collected from patients admitted to the hospital, 200 P. aeruginosa isolates were identified. MDR strains of P. aeruginosa were detected by disc diffusion method. BiO NPs were synthesized using wild Bacillus subtilis (B. subtilis) strain and infrared spectroscopy, X-ray diffraction and scanning electron microscopy techniques. The antibacterial effect of the NPs compared to antibiotics against MDR strains was evaluated using a standard disk diffusion method. BiO NPs were synthesized at 0.005 M concentration of solution. According to the SEM im
... Show MorePhase change materials (PCMs) such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES) has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.%) of (TiO2) nano-particles with about (10nm) diameter. It is found that the phase change temperature varies with adding (TiO2) nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity ha
... Show MoreUndoped and Iodine (I)–doped chrome oxide (Cr2O3)thin films have been prepared by chemical spray pyrolysis technique at substrate temperatures(773K) on glass substrate. Absorbance and transmittance spectra have been recorded as a function of wavelength in the range (340-800 nm) in order to study the optical properties such as reflectance, Energy gap of allowed direct transition, extinction coefficient refractive index, and dielectric constant in real and imagery parts all as a function of wavelength. It was found that all the investigated parameters affect by the doping ratios.
Spray pyrolysis technique (SPT) is employed to synthesize cadmium oxide nanostructure with 3% and 5% Cobalt concentrations. Films are deposited on a glass substrate at 350 ᵒC with 150 nm thickness. The XRD analysis revealed a polycrystalline nature with cubic structure and (111) preferred orientation. Structural parameters represent lattice spacing, crystallite size, lattice parameter and dislocation density. Homogeneous surfaces and regular distribution of atoms were showed by atomic force microscope (AFM) with 1.03 nm average roughness and 1.22 nm root mean square roughness. Optical properties illustrated a high transmittance more than 85% in the range of visible spectrum and decreased with Co concentration increasing. The absorption
... Show MoreThe aim of this research is to study the optical properties of carbon-magnesium plasma resulting from arc discharge with explosive wire technique, where the energy gap of each of carbon and magnesium and the carbon-magnesium bond for three values of the wire exploding current (50,75,100 amperes) was studied. It was found that the energy gap for each of carbon and magnesium decreases with increasing the current, the X-ray diffraction of magnesium and the carbon-magnesium suspension was studied, and FTIR of the carbon-magnesium suspended carbon was studied for three values of the exploding current (50, 75, 100 amperes) and the type of bonds for carbon and magnesium was determined. To ob
In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
A new method for the determination of the drug cefalexin in some Pharmaceuticals using (UV-Vis) and indirect Flame Atomic Absorption Spectrophotometer (FAAS) , Fe III should forms a chelating complex with cefalexin (CEX –Fe III) at pH (1-8) and the best pH for the formation of (CEX –Fe III) chelating complex was (2) .The complex extracted with Methanol and Dimethy-Sulphoxide .The mole-ratio method has been used to determine the structure of chelate (CEX - Fe III) and found to be 2:1 LM ( Ligand : Metal.) .
Keywords : Cefalexin , chelating complex.
Background: Dental implants provide a unique treatment modality for the replacement of a lost dentition .This is accomplished by the insertion of relatively an inert material (a biomaterial) into the soft and hard tissue of the jaws, there by providing support and retention for dental prostheses. Low level laser therapy (LLLT) is an effective tool used to prompt bone repair and remodeling, this has referred to the biostimulation effect of LLLT. The Aim of this study was to evaluate the effects of inflammatory cells on osseointegration of CpTi implant irradiated by low level laser. Materials and Methods: thirty two adult New Zealand white rabbits, received titanium implants were inserted in the tibia. The right side is considered as experime
... Show MoreIn this work, the spectra for plasma glow produced by pulse
Nd:YAG laser (λ=532 and 1064nm) on Ag:Al alloy with same molar
ratio samples in distilled water were analyzed by studying the atomic
lines compared with aluminum and silver strong standard lines. The
effect of laser energies of the range 300 to 800 mJ on spectral lines,
produced by laser ablation, were investigated using optical
spectroscopy. The electron temperature was found to be increased
from 1.698 to 1.899 eV, while the electron density decreased from
2.247×1015 to 5.08×1014 cm-3 with increasing laser energy from 300
to 800 mJ with wavelength of 1064 nm. The values of electron
temperature using second harmonic frequency are greater than of<
Abstract
Black paint laser peening (bPLP) technique is currently applied for many engineering materials , especially for aluminum alloys due to high improvement in fatigue life and strength . Constant and variable bending fatigue tests have been performed at RT and stress ratio R= -1 . The results of the present work observed that the significance of the surface work hardening which generated high negative residual stresses in bPLP specimens .The fatigue life improvement factor (FLIF) for bPLP constant fatigue behavior was from 2.543 to 3.3 compared to untreated fatigue and the increase in fatigue strength at 107 cycle was 21% . The bPLP cumulative fatigue life behav
... Show More