The natural polyphenolic compound that cinnamon contains is well known for its various biological activities, a broad variety of pharmacological and therapeutic properties. Diversified biomedical and pharmacological applications benefit from organic nanoparticles with controlled properties. Bioactive and non-toxic, cinnamon nanoparticles (CNPs) can be effective antibacterial agents. Driven by this idea, we prepared spherical CNPs using liquid (PLAL) pulse laser ablation technique and defined those NPs. Using Q-switched Nd : YAG With a wavelength of 1064 nm pulse laser of constant energy 500 mj , And different laser pulses ( 250 , 500 , 750 , 1000 ) pulse /sec a pure cinnamon target submerged in liquid ethanol (5 mL) was ablated. The results on the composition, morphology and optical properties of as-grown CNPs of differing laser fluence were determined. Samples were described through Fe-SEM , UV-Vis , FTIR , The synergy between ethanol as liquid growth media and fundamental laser wavelength has been due to certain distinctive characteristics of CNPs. It has been developed that the spherical CNPs achieved in the suspension of ethanol could be beneficial for antioxidant purposes.
Background/purpose: Dental implantology involves different treatments that have been used in conjunction with dental implant surgery to increase implant stability and bone regeneration process. Photobiomodulation( PBM) can be one of these techniques. The objective of this study was to evaluate the bone density around implants. Materials and methods: in this study, 10 individuals had 20 implants inserted in the posterior of their mandibles. each patient received two implants the left side served as the control whereas the right side served as the study group with a diode laser (same patients). measurements were made for each implant. Measurements were obtained using cone-
... Show MoreBackground: Laser is a novel physical therapy technique used to treat various conditions, including wound healing, inhibition of bacterial growth, and postoperative wounds. High-power pulsed alexandrite laser therapy is one of the most prevalent forms of laser therapy, which is a noninvasive method for treating various pathological conditions, thereby enhancing functional capacities and quality of life. It is a modern medical and physiotherapeutic technology. Generally, the Alexandrite laser emits infrared light with a wavelength of 755 nm, allowing it to propagate and penetrate tissues. Objective: This study focused on the application of a high-power pulsed alexandrite laser in vitro to evaluate the effect of a pulsed alexandrite l
... Show MoreAbstract: Background: High percentage of diabetes patients complain from post extraction hemorrhage. Many types of hemostatic materials are used to stop bleeding after teeth extraction: diode lasers are good hemostatic agents owing to their highly absorption by hemoglobin therefore they are used in soft tissue procedures with relatively no effects on dental hard tissues due to their poorly absorption by water and hydroxyapatite. Objectives: The aim of this study is to evaluate the efficiency of diode laser to assist the clot formation after tooth extraction for type II diabetes patients with minimum temperature elevation to prevent periodontal destruction. Materials and methods: From 12 type II diabetes patients (7 males and 5 females wi
... Show MoreAbstract: The power and the size of the final spot of the laser beam reaching the target are very important requirements in most of the laser applications and fields such as medical, military, and scientific, so studying laser propagation in the atmosphere is a very important topic. The propagation of the laser beam through the atmosphere is subject to several attenuation processes that deplete the power and expand the beam. Through the simulation results of the free electron laser within the visible region of the electromagnetic spectrum (400-700nm), it was found that the attenuation increases with decreasing wavelength. Laser propagation in the presence of rain and snow leads to a very large loss of power compared to propagation i
... Show MoreIn the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can b
... Show More