Preferred Language
Articles
/
ijp-588
Surface Plasmon Plastic Optical Fiber Resonance with Multi-Layer as Chemical Sensor
...Show More Authors

A chemical optical fiber sensor based on surface plasmon resonance (SPR) was developed and implemented using multimode plastic optical fiber. The sensor is used to detect and measure the refractive index and concentration of various chemical materials (Urea, Ammonia, Formaldehyde and Sulfuric acid) as well as to evaluate the performance parameters such as sensitivity, signal to noise ratio, resolution and figure of merit. It  was noticed that the value of the sensitivity of the optical fiber-based SPR sensor, with 60nm and 10 mm long, Aluminum(Al) and Gold (Au) metals film exposed sensing region, was 4.4 μm, while the SNR was 0.20, figure of merit was 20 and resolution 0.00045. In this work a multimode plastic optical fiber with a core diameter of 980 μm, fluorinated polymer cladding of 20 μm and a numerical aperture of 0.51 was used.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Aug 01 2018
Journal Name
Iranian Journal Of Science And Technology, Transactions A: Science
Structural, Optical and Sensing Behavior of Neodymium-Doped Vanadium Pentoxide Thin Films
...Show More Authors

View Publication
Scopus (16)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Mon Jul 17 2023
Journal Name
Aip Conference Proceedings
Calculation of modes properties for multimode optical fibers at 633 nm wavelength
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jun 11 2003
Journal Name
Iraqi Journal Of Laser
The Use of Pulse Frequency Modulation Technique for Optical Video Communication System
...Show More Authors

An optical video communication system is designed and constructed using pulse frequency modulation (PFM) technique. In this work PFM pulses are generated at the transmitter using voltage control oscillator (VCO) of width 50 ns for each pulse. Double frequency, equal width and narrow pulses are produced in the receiver be for demodulation. The use of the frequency doubling technique in such a system results in a narrow transmission bandwidth (25 ns) and high receiver sensitivity.

View Publication Preview PDF
Publication Date
Sun Feb 20 2022
Journal Name
Papers In Physics
Electronic and optical properties of nickel-doped ceria: A computational modelling study
...Show More Authors

Cerium oxide (CeO2), or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the eect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Optik
Optical and structural characteristics of pulsed DC magnetron sputtered Ce1−xTixOy coatings
...Show More Authors

This contribution investigates the impact of adding transition metal of Ti to CeOy samples at various concentrations referring to 0, 15.84, 24.46, 34.46, 36.23, 38.46, 45.38% and pure TiOy, correspondingly. The samples were fabricated by the magnetron sputtering technique. X-ray diffraction (XRD) configurations demonstrate the presence of α-Ce2O3 and Ce2O3 phases with increased Ti contents in the systems. X-ray photoelectron spectroscopy (XPS) experimentation confirms the purity of the S1-sample (CeO2) and the purity of the S8-sample (TiO2). Further XPS analysis reveals that Ti incorporation in the doped systems functions as a reducing agent because of the existence of α-Ce2O3 and Ce2O3 phases. Moreover, based on UV–vis spectroscopy res

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Wed Dec 18 2019
Journal Name
Bulletin Of Materials Science
Investigation of optical properties and glass transition temperature of nano-epoxy matrix
...Show More Authors

View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Investigation of Structural, Mechanical, Thermal and Optical Properties of Cu Doped TiO2
...Show More Authors

In this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Innovative Research In Science, Engineering And Technolog
Effect Of heat Treatment On The Optical Properties Of CuInSe2 Thin Films
...Show More Authors

CuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.

View Publication
Publication Date
Tue Jan 01 2013
Journal Name
International Journal Of Science And Technology (ijst)
Study of Optical and Structures for TiO2 prepared by Pulse Laser Deposition
...Show More Authors

Publication Date
Sat Mar 01 2025
Journal Name
Al-iraqia Journal For Scientific Engineering Research
Blue Laser Optical NOMA Communication Applied on Control Drone-to-Underwater Vehicle
...Show More Authors

oday deep ocean life has not been discovered by humans including many secret world things to be explored. The researcher has focused on underwater optical wireless communications using various kinds of complex digital Signal processing most of them used in air and starting applied in underwater communication. The Internet of Things (IoT) uses underwater called Internet of Underwater Things (IoUT) applications to explore the underwater world with other devices. However, the difference in concentration between air and water surfaces is not easy making wireless communication more complicated. Visible light passes the water's surface with scattering and distortion inside the water and each color of light has different attenuation the blue laser

... Show More
View Publication Preview PDF