In this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Square (RMS) value of thin films surface roughness increased with increasing of Ag contents, while the crystallite size was found to decrease with increase in different silver content. The sensitivity toward NO2 and NH3 gas has been measured under different ppm concentrations. TiO2 with noble metal has a sensitivity higher than pure TiO2 where as TiO2 with Ag metal deposited on glass substrate has maximum sensitivity to NO2 gas with a value of ~(50 %) at the nanocomposite 90%TiO2/10%Ag films with best operation temperature at 200 °C. In addition, noble metal like Ag to the titanium dioxide materials makes them sensitive to NO2 gas.
Background: Nanoparticles are clusters of atoms in a size range from (1-100) nm. Nano dentistry creates amazing useful structures from individual atoms or molecules (nanoparticles), which provides a new alternative and a possibly superior strategy in prevention and treatment of dental caries through management of dental plaque biofilms. The aim of the study was to test the sensitivity of Streptococcus mutans to different concentrations of hydroxyapatite and iron oxide nanoparticles suspension solutions, in comparison to chlorhexidine, and de-ionized water, in vitro. Materials and methods: Agar well technique was applied to test the sensitivity of Streptococcus mutans to different concentrations of hydroxyapatite and iron oxide nanoparticle
... Show MoreGypsum Plaster is an important building materials, and because of the availabilty of its raw materials. In this research the effect of various additives on the properties of plaster was studied , like Polyvinyl Acetate, Furfural, Fumed Silica at different rate of addition and two types of fibers, Carbon Fiber and Polypropylene Fiber to the plaster at a different volumetric rate. It was found that after analysis of the results the use of Furfural as an additive to plaster by 2.5% is the optimum ratio of addition to that it improved the flexural Strength by 3.18%.
When using Polyvinyl Acetate it was found that the ratio of the additive 2% is the optimum ratio of addition to the plaster, because it improved the value of the flexural stre
As tight gas reservoirs (TGRs) become more significant to the future of the gas industry, investigation into the best methods for the evaluation of field performance is critical. While hydraulic fractured well in TRGs are proven to be most viable options for economic recovery of gas, the interpretation of pressure transient or well test data from hydraulic fractured well in TGRs for the accurate estimation of important reservoirs and fracture properties (e.g. fracture length, fracture conductivity, skin and reservoir permeability) is rather very complex and difficult because of the existence of multiple flow profiles/regimes. The flow regimes are complex in TGRs due to the large hydraulic fractures n
Fabrication of a photodetector consists of the conjugated polymer "MEH-PPV"- poly (2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenlenevinylene) and MEH-PPV:MWCNT nanocomposite thin film. The volume ratio investigated was 0.75:0.25. MEH-PPV was dissolved in chloroform solvent and doped with MWCNTs. The spin coating method was used to achieve a facile and low cost photodetector. The absorption spectrum decreases by adding the CNTs. The PL spectrum detected recombination curve results by doping the polymer with CNTs, and AFM measurement showed an increase of roughness average from (0.168 to 2.43nm) of "MEH-PPV" and "MEH-PPV:CNTs", respectively. The doping ratio 0.25, which has a higher photoresponsivity, was evaluated at 1.70 A/W and 2.14 A/W of th
... Show MoreFor the first time Iron tungstate semiconductor oxides films (FeWO4) was successfully synthesized simply by advanced controlled chemical spray pyrolysis technique, via employed double nozzle instead of single nozzle using tungstic acid and iron nitrate solutions at three different compositions and spray separately at same time on heated silicone (n-type) substrate at 600 °C, followed by annealing treatment for one hour at 500 °C. The crystal structure, microstructure and morphology properties of prepared films were studied by X-ray diffraction analysis (XRD), electron Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. According to characterization techniques, a material of well-crystallized monoclinic ph
... Show MoreCuO-ZnO-Al2O3 catalyst was prepared in the ratios of 20:30:50 respectively, using the coprecipitation method of Cu, Zn and Al carbonates from their nitrate solutions dissolved in distilled water by adding sodium bicarbonate as precipitant.The catalyst was identified by XRD and quantitatively analysis to determine the percentages of its components using flame atomic absorption technique. Also the surface area was measured by BET method. The activity of this prepared catalyst was examined through the oxidation of ethanol to acetaldehyde which was evaluated by gas chromatography.
In this research study the effect of fish on the properties optical films thickness 1200-1800 and calculated energy gap Basra direct transport permitted and forbidden to membranes and urged decreasing values ??of Optical Energy Gap increase fish included accounts optical also calculate the constants visual as factories winding down and the refractive index and reflectivity membranes also by real part and imaginarythe dielectric constant
An experimental study is conducted on the utilization of the inlet ethanol injection technique in order to evaluate its impact on the performance of a two-shaft T200D mini-gas turbine engine. The maximum degradation recorded in power output was 32.8% at the climate temperature of 45oC. Nevertheless, at that temperature, adding ethanol with Eth/LPG ratio of 20% by volume brought an enhancement in power output of 19.2% compared to normal LPG run. SFC of the dual-fuel engine ranked a level of 22% higher than that with pure LPG consumption. The overall efficiency suffered a maximum reduction of 14.4% with Eth/LPG fuel ratio of 20%, but when the loading was raised beyond 70% of the engine full load; the efficiency of dual-fuel engi
... Show MoreCommercial, industrial, and military activity, largely in the 19th and 20th centuries, have led to environmental pollution that can threaten human health and ecosystem function, liquid gas petroleum (LPG) products are the major sources of energy for industry and daily life that cause environmental contamination during various stages of production, transportation, refining and use. Screening of bacterial isolate by using clear zone techniques and biomass and optical density. Results revealed that isolate Burkholdaria cepatia showed a high ability for hydrocarbons biodegradation and this isolate identified depending on morphological cultural, gram stain, microscopic features, biochemical tests, and VITEK2 compact. In this study,
... Show More