In this study, industrial fiber and polymer mixtures were used for high-speed impact (ballistic) applications where the effects of polymer (epoxy), polymeric
mixture (epoxy + unsaturated polyester), synthetic rubber (polyurethane), Kevlar fiber, polyethylene fiber (ultra High molecular weight) and carbon fiber.
Four successive systems of samples were prepared. the first system component made of (epoxy and 2% graphene and 20 layer of fiber), then ballistic test was
applied, the sample was successful in the test from a distance of 7 m. or more than, by using a pistol personally Glock, Caliber of 9 * 19 mm. The second
system was consisting of (epoxy, 2% graphene, 36 layers of fiber and one layer of hard rubber), it was succeeded in testing from a distance of 4 m or more than, by using a pistol personally Glock, Caliber of 9 * 19 mm. The third system made of mixture (80% epoxy + 20% unsaturated polyester) and44 layers of
fiber and 2% graphene as a composite with 20 layers of fiber outside the composite material, it was successful in testing by using a semi-automatic rifle
(AK47) Caliber of 7.62 * 51 mm from a distance of 15 m or more than. The fourth system was prepared from alumina ceramic plate Al2O3 (from damaged
laboratory furnace linings) with composite consisted of (a mixture (epoxy 80%+ 20% unsaturated polyester) and 20% silicon carbide). placed in a cloth bag
together. It was successful in testing by using a semi-automatic rifle (AK47) Caliber of 7.62 * 51 mm from a distance of 15 m or more than.
In this work, the effect of different particle size on the nonlinear optical properties of silver nanoparticles in de-ionized water was studied. The experimental observation of the far field diffraction patterns by CCD camera in two and three dimensions. The maximum change of nonlinear refractive index and the relative phase shift were calculated. The self-defocusing technique was used with a continuous-wave radiation from DPSS Blue laser .The wavelength is 473 nm with an output power of 270 mW. All the Ag colloids samples containing the sizes 15, 30, 50, and 70 nm of silver nanoparticles used in the study were chemically prepared. It was found that the nonlinear refractive index is a particle size dependent and of the order of 10-7 cm2/
... Show MoreThe effect of micro-and nano silica particles (silica SiO2 (100 μm), Fused silica (12nm)) on some mechanical properties of epoxy resin was investigated (Young's modulus, Flexural strength). The micro-and nano composites were prepared by using three steps process with different volume fraction of micro-and nano particles (1, 2, 3, 4, 5, 7, 10, 15, and 20 vol. %). Flexural strength and Young's modulus of nano composites were increased at low volume fraction (max. enhancement at 4 vol.% ). However at higher volume fraction both Young's modulus and flexural strength decrease. Moreover, above, the mechanical properties are enhanced more than that of neat epoxy resin. The flexural strength decreases with increasing the volume fraction of micr
... Show MoreNisoldipine (NSD) is a dihydropyridine class of calcium channel blockers used for hypertension treatment, it belongs to class II BCS (low solubility with high permeability), its absolute bioavailability is only 5% due to presystemic metabolism in the gut wall. It is also a substrate for a CYP3A and P-gp. Bilosomes are lipid bilayer vesicles incorporating bile salts in their walls to prevent degredation by GIT bile salts. The aim of this study is to prepare nisoldipine bilosomes as vesicular carrier and assess the effect of different formulation variables such as type of surfactant, amount of cholesterol, surfactant and sonication time on particle size, entrapment efficiency and poly dispersity index of the prepared bilos
... Show MoreCorrosion Resistance Enhancement for low carbon steel is very important to extend its life service, the coating process is one of the methods which can using to achieve this, and it's the most important in surface treatments to improve the properties of metals and alloys surfaces such as corrosion resistance. In this work, low carbon steel was nitrided and coated with nano zinc using gas phase coating technical, to enhance the resistance of corrosion. The process included adding two layers. The first, a nitride layer, was added by precipitating nitrogen (N) gas, and the second, a zinc (Zn) layer, was added by precipitating Zn. The process of precipitating was carried out at different periods (5, 10, and 15 minutes). Scan electron mi
... Show MoreBuckling analysis of composite laminates for critical thermal (uniform and linear) and mechanical loads is reported here. The objective of this work is to carry out theoretical investigation of buckling analysis of composite plates under thermomechanical loads, and experimental investigation under mechanical loads. The analytical investigation involved certain mathematical preliminaries, a study of equations of orthotropic elasticity for classical laminated plate theory (CLPT), higher order shear deformation plate theory (HSDT) , and numerical analysis (Finite element method), then the equation of motion are derived and solved using Navier method and Levy method for symmetric and anti-symmetric cross-ply and angle-ply laminated plates t
... Show MorePolymer additives binder system provides many properties useful in thermal energy storage (TES) then developed the efficient energy storage materials and green strength bodies system.
This paper studies the thermal energy storage property for polyvinyl alcohol (PVOH) / paraffin wax (WPw) blends. To enhance paraffin wax thermal conductivity, PVOH as a material which high conductivity was employed. A fixed weight of Paraffin wax was dispersed with PVOH heterogeneously at different additive weights ratios of PVOH/Pw (50/50, 67/33, 75/25, and 80/20) wt. ratio respectively. The composite material was prepared using wetted pressing method.
Both base materials (polyvinyl alcohol and paraffin wax) were scanned using differential
... Show MoreThe present study focused mainly on the vibration analysis of composite laminated plates subjected to
thermal and mechanical loads or without any load (free vibration). Natural frequency and dynamic
response are analyzed by analytical, numerical and experimental analysis (by using impact hammer) for
different cases. The experimental investigation is to manufacture the laminates and to find mechanical
and thermal properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus,
longitudinal and transverse thermal expansion and thermal conductivity. The vibration test carried to
find the three natural frequencies of plate. The design parameters of the laminates such as aspect ratio,
thickness
This paper presents an application of a Higher Order Shear Deformation Theory (HOST 12) to problem
of free vibration of simply supported symmetric and antisymmetric angle-ply composite laminated plates.
The theoretical model HOST12 presented incorporates laminate deformations which account for the effects
of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of in-plane
displacements with respect to the thickness coordinate – thus modeling the warping of transverse crosssections more accurately and eliminating the need for shear correction coefficients. Solutions are obtained in
closed-form using Navier’s technique by solving the eigenvalue equation. Plates with varying number of