Fe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies size were observed also from the images the some particles have uneven shapes with agglomerate and the other have spherical shape. The exploding FeCoSb alloy wire plasma parameters is study by optical emission spectroscopy. The emission spectra of the plasma have been recorded and analyzed. The plasma electron temperature (Te), was determined by Boltzmann plot, and the electron density (ne), by Stark broadening for wire with diameter 0.3 mm and current of 75A in distilled water.
The research includes the synthesis and identification of the mixed ligands complexes of M 2 Ions in general composition ,[M(Leu) 2 (SMX)] Where L leucine (C 6 H 13 NO 2 )symbolized (LeuH) as a primary ligand and Sulfamethoxazole C 10 H 11 N 3 O 3 S) symbolized (SMX)) as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in(v/v) ethanol /water as solvent containing NaOH. The reaction required the following [(metal: 2(Na Leu --): (SMX )] molar ratios with M(II) ions, Were M ( Mn ( II),Co (II),Ni(II),Cu( II),Zn (II),Cd(II)and Hg( The UV Vis and magnetic moment data revealed an octahedral geometry around M(II), The conductivity data show a non electrolytic nature of the complexes . The
... Show MoreIn this work, varying compositions of SiO2 micro filler were added
with the Polyvinyl Chloride (PVC) and samples have been prepared
using film casting technique. The results have been analyzed and
compared for PVC samples with (1 wt%, 3 wt%, 5 wt% and 10 wt%)
SiO2 micro filler. Mechanical characteristics such as tensile strength,
elongation at break and Young`s modulus were measured for all the
samples, where the tensile strength was increased from 8.39 Mpa for
purified PVC to 16 Mpa for 3% SiO2/PVC composite. Also, thermal
conductivity measurement values illustrated that composite materials
have a good thermal insulation at 10 wt. %, thermal conductivity was
decreased from 0.1684 W/m.
This work includes the synthesis and identification of ligand {3-((4-acetylphenyl)amino)-5,5-dimethylcyclohex2-en-1-one} (HL* ) by the treatment of 5,5-dimethylcyclohexane-1,3-dione with 4-aminoacetophenone under reflux. The ligand (HL* ) was identified via FTIR, Mass spectrum, elemental analysis (C.H.N.), 1H and 13C-NMR spectra, UV-Vis spectroscopy, TGA and melting point. The complexes were synthesized from ligand (HL* ) mixed with 3-aminophenol (A) and metal ion M(II), where M(II) = (Mn, Co, Ni, Cu, Zn and Cd) at alkaline medium to produce complexes of general formula [M(L* )(A)] with (1:1:1) molar ratio. These complexes were detected via FT-IR spectra, UV-Vis spectroscopy as well as elemental analysis (A.A) and melting point, conductivit
... Show MoreThis work includes the synthesis and identification of ligand {3-((4-acetylphenyl)amino)-5,5-dimethylcyclohex2-en-1-one} (HL* ) by the treatment of 5,5-dimethylcyclohexane-1,3-dione with 4-aminoacetophenone under reflux. The ligand (HL* ) was identified via FTIR, Mass spectrum, elemental analysis (C.H.N.), 1H and 13C-NMR spectra, UV-Vis spectroscopy, TGA and melting point. The complexes were synthesized from ligand (HL* ) mixed with 3-aminophenol (A) and metal ion M(II), where M(II) = (Mn, Co, Ni, Cu, Zn and Cd) at alkaline medium to produce complexes of general formula [M(L* )(A)] with (1:1:1) molar ratio. These complexes were detected via FT-IR spectra, UV-Vis spectroscopy as well as elemental analysis (A.A) and melting point, conductivit
... Show MoreThin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.
Indium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at substrate temperatures (473 K) by flash evaporation. X-ray diffraction studies confirm the polycrystalline of the films and the films show preferential orientation along the (111) plane .The particle size increases with the increase of annealing time .The transmission spectra of prepared samples were found to be in the range (400-5000 cm-1 ) from FTIR study . This indicates that the crystallinity is improved in the films deposited at higher annealing time.
The study aims to find out the extent to which several Iraqi institutional accreditation standards (governance and administration, scientific research, curricula) are applied in two public universities (Baghdad and Middle Technical University) and two private universities (Uruk and Al-Mansour College) by diagnosing strengths and weaknesses and proposing a mechanism and procedures to help educational institution aims to reduce or eliminate the gap. The study stems from the extent of application of several Iraqi institutional accreditation standards represented as it was worked on through observation and field coexistence to reach scientific and practical facts. The method of case study and comparison betwe
... Show More