Fe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies size were observed also from the images the some particles have uneven shapes with agglomerate and the other have spherical shape. The exploding FeCoSb alloy wire plasma parameters is study by optical emission spectroscopy. The emission spectra of the plasma have been recorded and analyzed. The plasma electron temperature (Te), was determined by Boltzmann plot, and the electron density (ne), by Stark broadening for wire with diameter 0.3 mm and current of 75A in distilled water.
Corrosion behavior of aluminum alloy 7025 was investigated in hydrochloric acid (pH=1) containing 0.6 mol.dm-3 NaCl in the existence and absence of diverse concentrations of sulphamethoxazole as environmentally friendly corrosion inhibitor over the temperature range (298-313)K. Electrochemical polarization method using potentiostatic technique was employed. The inhibition efficiency has been raised with increased sulphamethoxazole concentration but lessened at temperature increases. The highest efficiency value was 96.5 at 298 K and 2 x10-4 mol.dm-3 concentration of sulphamethoxazole. The sulphamethoxazole adsorption was agreed with Langmuir adsorption isotherm. Some thermodynamic parameter (△Gads) and activation energy (Ea) were determin
... Show MoreIn this work, InSe thin films were deposited on glass substrates by thermal evaporation technique with a deposit rate of (2.5∓0.2) nm/sec. The thickness of the films was around (300∓10) nm, and the thin films were annealed at (100, 200 and 300)°C. The structural, morphology, and optical properties of Indium selenide thin films were studied using X-ray diffraction, Scanning Electron Microscope and UV–Visible spectrometry respectively. X-ray diffraction analyses showed that the as deposited thin films have amorphous structures. At annealing temperature of 100°C and 200°C, the films show enhanced crystalline nature, but at 300°C the film shows a polycrystalline structure with Rhombohedral phas
The seasonal behavior of the light curve for selected star SS UMI and EXDRA during outburst cycle is studied. This behavior describes maximum temperature of outburst in dwarf nova. The raw data has been mathematically modeled by fitting Gaussian function based on the full width of the half maximum and the maximum value of the Gaussian. The results of this modeling describe the value of temperature of the dwarf novae star system leading to identify the type of elements that each dwarf nova consisted of.
In this work, of New Ligand [(E)-5-hydroxy-4-(3-(4-methoxy phenyl) acryl amido) naphthalene -1- sulfonic acid] (ANS) was prepared by reflexing reaction of 4-amino-5-hydroxy naphthalene sulfonic acid with para methoxy cinnamic acid, this produced and described chemical was employed as ligand to prepare tri and di-organotin complexes by condensation reaction with the salts of organotin chloride (phenyl, butyl, and methyl tin chloride). Specialized methods, including elemental analysis, (tin and proton) magnetic resonance, and infrared spectra, were used to identify the complexes. DPPH (2,2-diphenyl-1-picrylhydrazyl) and CUPRAC (Cupric Reducing Antioxidant Capacity) are both commonly used methods for measuring antioxidant capacity in v
... Show MoreIn this work, 332 Al alloy was prepared and reinforced with (0.5% and 1%) nano-Al2O3 particles. The prepared unreinforced and reinforced 332 Al alloy with nano-Al2O3 were solution heat treated (T6) at 510 ̊C and aged at 225 ̊C with different times (1, 3, and 5 h). Hardness test was performed on all the prepared alloys. All prepared alloys were dry slided under different applied loads (5, 10, 15, and 20 N) against steel counterface surface using pin on disk apparatus. The results showed that refinement effect was observed after addition of nano-Al2O3 particles and a change in silicon morphology after performing the solution heat treatment. The results also showed that har
... Show MoreIn this work, the spectra for plasma glow produced by pulse
Nd:YAG laser (λ=532 and 1064nm) on Ag:Al alloy with same molar
ratio samples in distilled water were analyzed by studying the atomic
lines compared with aluminum and silver strong standard lines. The
effect of laser energies of the range 300 to 800 mJ on spectral lines,
produced by laser ablation, were investigated using optical
spectroscopy. The electron temperature was found to be increased
from 1.698 to 1.899 eV, while the electron density decreased from
2.247×1015 to 5.08×1014 cm-3 with increasing laser energy from 300
to 800 mJ with wavelength of 1064 nm. The values of electron
temperature using second harmonic frequency are greater than of<
Background: This study report the corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy samples without coating and with hydroxyapatite, partial stabilized zirconia and mixture of partial stabilized zirconia and hydroxyapatite coating and comparison between them through electrochemical polarization tests in 37 0 C Hank's solution. Materials and methods: Electrophoretic deposition technique (EPD) was used to achieve the coating from each one of three types of the coating materials (HAP, PSZ and mixture of 50% HAP and 50%PSZ) on Cp Ti and Ti-6Al-4V alloy samples. The electrochemical corrosion test was performed when samples were exposed to Hank's solution prepared in the laboratory and the polarization potential, corrosion rate
... Show MoreUnder cyclic loading, aluminum alloys exhibit less fatigue life than steel alloys of similar strength and this is considered as Achilles's heel of such alloys. A nanosecond fiber laser was used to apply high speed laser shock peening process on thin aluminum plates in order to enhance the fatigue life by introducing compressive residual stresses. The effect of three working parameters namely the pulse repetition rate (PRR), spot size (ω) and scanning speed (v) on limiting the fatigue failure was investigated. The optimum results, represented by the longer fatigue life, were at PRR of 22.5 kHz, ω of 0.04 mm and at both v's of 200 and 500 mm/sec. The research yielded significant results represented by a maximum percentage increase in the fa
... Show MoreAssimilation is defined ,by many phoneticians like Schane ,Roach ,and many others, as a phonological process when there is a change of one sound into another because of neighboring sounds.This study investigates the phoneme assimilation as a phonological process in English and Arabic and it is concerned specifically with the differences and similarities in both languages. Actually ,this study reflects the different terms which are used in Arabic to refer to this phenomenon and in this way it shows whether the term 'assimilation ' can have the same meaning of 'idgham' in Arabic or not . Besides, in Arabic , this phenomenon is discussed from&nb
... Show More|
Theoretical spectroscopic studies of beryllium oxide has been carried out, potential energy curves for ground states X1Σ+ and exited states A1Π , B1Σ+ by using two functions Morse and and Varshni compared with experimental results. The potentials of this molecule are agreement with experimental results. The Fortrat Parabola corrcponding to and branches were determind in the range 1<J<20 for the (0-0) band. It was found that for electronic transition A1Π- X1Σ+ the bands head lies in branche of Fortrat p |