This work describes the weathering effects (UV-Irradiation, and Rain) on the thermal conductivity of PS, PMMA, PS/PMMA blend for packaging application. The samples were prepared by cast method at different ratios (10, 30, 50, 70, and 90 %wt). It was seen that the thermal conductivity of PMMA (0.145 W/m.K), and for PS(0.095 W/m.K), which increases by PS ratio increase up to 50% PS/PMMA blend then decreased that was attributed to increase in miscibility of the blend involved. By UV-weathering, it was seen that thermal conductivity for PMMA increased with UV-weathering up to (30hr) then decreased, that was attributed to rigidity and defect formation, respectively. For 30%PS/PMMA, there results showed unsystematic decrease in thermal conductivity, which was attributed to unsystematic degradation. By Rain-weathering, thermal conductivity PS, PMMA, and 30 %PS, PMMA, it was seen systematic decreased in PS and 30 % PS/PMMA thermal conductivity; and systematic decrease in PMMA thermal conductivity. That due to the water diffusion in the samples that created some voids, bubbles, and results in decrease in thermal conductivity. This result was attributed to the decrease in adhesive between the components of polymer systems. The results suggested that the samples involved could be used for packaging application.
This research aims at studying each of the cold and hot thermal wavelengths affecting
Iraq for a minimum climatic course of 11 years beginning from 1992 till 2002. Three stations
were selected including the parts of Iraq surface: Mosul, Baghdad and Basrah.
The wave days were also connected with the related climatic elements represented by
the wind direction and speeds and the relative humidity. It was shown that Iraq is affected by
the rates of hot thermal wave lengths greatly compared to the rates of cold wavelengths. The
results suggested that the highest rate of hot and cold wavelengths recorded over Basra station
was (3.5) days for the cold and (5) days for the hot. While the lowest rates was at Mosul
station
The Iraqi houses flattening the roof by a concrete panel, and because of the panels on the top directly exposed to the solar radiation become unbearably hot and cold during the summer and winter. The traditional concrete panel components are cement, sand, and aggregate, which have a poor thermal property. The usage of materials with low thermal conductivity with no negative reflects on its mechanical properties gives good improvements to the thermal properties of the concrete panel. The practical part of this work was built on a multi-stage mixing plan. In the first stage the mixing ratio based on the ratios of the sand to cement. The second stage mixing ratios based on replacing the coarse aggregate quantities with the
... Show MoreThe present work aims to validate the experimental results of a new test rig built from scratch to evaluate the thermal behavior of the brake system with the numerical results of the transient thermal problem. The work was divided into two parts; in the first part, a three-dimensional finite-element solution of the transient thermal problem using a new developed 3D model of the brake system for the selected vehicle is SAIPA 131, while in the second part, the experimental test rig was built to achieve the necessary tests to find the temperature distribution during the braking process of the brake system. We obtained high agreement between the results of the new test rig with the numerical results based on the developed model of the brake
... Show MoreUltra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
Soil water use and water storage vary by vegetative management practices, and these practices affect land productivity and hydrologic processes. This study investigated the effects of agroforestry buffers (AB), grass buffers (GB), and biofuel crops (BC), relative to row crops (RC) on soil water use for a claypan soil in northern Missouri, USA. The experiment located at the Greenley Memorial Research Center included RC, AB, GB, and BC established in 1991, 1997, 1997, and 2012, respectively. Soil water reflectometer sensors installed at 5‐, 10‐, 20‐, and 40‐cm depths monitored soil water from April to November in 2017 and 2018. Results showed significant differences in weekly volumetric water content (VWC) among treatments for all fou
... Show MoreThe process of transporting waste from urban areas to sanitary landfill sites requires large amounts of money due to the length and distance. To address this problem, temporary transfer stations were established by the Municipality of Baghdad to reduce the cost of transportation, and for the purpose of preserving the environment in a sustainable manner, standards were set for the establishment of these stations. The two stations of Al-Karrada Municipality and Al-Shula Municipality were chosen as a case study to measure the extent of adopting and applying the standards for establishing substations locally, regionally and internationally, and the most important results were reached Which is that the transforming (regular) stations of the t
... Show MoreCompounds were prepared from In2O3 doped SnO2 with different doping ratio by mixing and sintering at 1000oC. Pulsed Laser Deposition PLD was used to deposit thin films of different doping ratio In2O3: SnO2 (0, 1, 3, 5, 7 and 9 % wt.) on glass and p-type wafer Si(111) substrates at ambient temperature under vacuum of 10-3 bar thickness of ~100nm. X-ray diffraction and atomic force microscopy were used to examine the structural type, grain size and morphology of the prepared thin films. The results show the structures of thin films was also polycrystalline, and the predominate peaks are identical with standard cards ITO. On the other side the prepared thin films declared a reduction of degree of crystallinity with the increase of doping ra
... Show MoreThe aim of this study is to compare the effects of three methods: problem-based learning (PBL), PBL with lecture method, and conventional teaching on self-directed learning skills among physics undergraduates. The actual sample size comprises of 122 students, who were selected randomly from the Physics Department, College of Education in Iraq. In this study, the pre- and post-test were done and the instruments were administered to the students for data collection. The data was analyzed and statistical results rejected null hypothesis of this study. This study revealed that there are no signifigant differences between PBL and PBL with lecture method, thus the PBL without or with lecture method enhances the self-directed learning skills bette
... Show MoreCO2 laser (10.6 μm) is the most often used laser in the oral surgery due to its high absorption by water of the oral tissues. Several benefits of the use of CO2 laser have been reported for oral surgical procedures. This study aims to evaluate the effect of CO2 laser on soft and hard oral tissues (in vitro study). This study was done on fresh tissues from sheep’s head. CO2Surgical Laser with different operation modes was used; 0.2 mm spot size using different laser parameters on the tongue, and bone making holes, incisions and cutting. The depths and widths of holes and incisions were measured using endodontic file under magnification. The speed of incisions was calculated and the required time for cutting was measured using sport clo
... Show More