Polymer electrolytes systems compose of (PEO+KI+I2) and (PEO+RbI+I2) with different concentration, and a fixed amount of ethylene carbonate (EC) and propylene carbonate (PC) over temperatures range 293-343 K prepared by solution cast method. The conductivity and dielectric constant of the gel electrolytes were studied. The conductivity of the electrolytes Ss & Hs increases steadily with increased concentration of salt KI and RbI. The higher value of conductivity of (4.7 10-3 @ RT S.cm-1) for S5 electrolyte which contains (KI 50%). Whereas the maximum amount of conductivity of (5.4 10³ @RT S.cm⁻ˡ) for H5 electrolyte which contains (RbI 50%) the ionic conductivity depends on the ionic radii of the migrating species (cation K⁺, Rb⁺) effect on it. As the temperature increase, the number of free ions also increases, thus increases the diffusion of ions through their free volume of the polymer. The dielectric constant decrease at higher frequencies due to the inability of dipoles to align quickly with the change of applied field. The dielectric constant proportional positively with variation temperature causes an increase in the dielectric constant. The higher the value of (εr), the better is the electrical conductivity.
Many additives are used to improve the performance of cables in terms of increasing their flame retardancy, thermal stability, thermal conductivity, and other characteristics. Unfortunately, most of these additives contain heavy metals. Therefore, the main objective of this study is to introduce a material representing a new generation of environmentally friendly heavy metal-free stabilizers for cable grade poly(vinyl chloride) that can compete with traditional materials in terms of performance and distinctive properties. This unique additive is Oxydtron, a synthetic silicate or simply nanocement. The tests performed are rheological properties represented by a capillary rheometry analysis, limiting o
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
Copper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreThis research has come out with that, function-based responsibility accounting system has harmful side – effects preventing it of achieving its controlling objective, that is, goal congruence, which are due to its un integrated measures, its focus on measuring measurable behaviors while neglecting behaviors that are hardly measured, and its dependence on standard operating procedures.
In addition, the system hypotheses and measures are designed to fit previous business environment, not the current environment.
The research has also concluded that the suggestive model, that is, activity-based responsibility accounting is designed to get ride of harmful side – effects of functi
... Show MoreTransient three-dimensional natural convection heat transfer due to the influences of heating from one side of an enclosure filled with a saturated porous media, whereas the opposite side is maintained at a constant cold temperature, and the other four sides are adiabatic, were investigated in the present work experimentally. Silica sand was used as a porous media saturated with distilled water filled in a cubic enclosure heated from the side,using six electrical controlled heaters, at constant temperatures of (60, 70, 80, 90, and 100oC). The inverse side cooled at a constant temperature of (24oC) using an aluminum heat exchanger, consisted of 15 channels feeded with constant temperature water. Eighty thermocouples were used to control t
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show More