Nanoparticle has pulled in expanding consideration with the developing enthusiasm for nanotechnology which hold potential as essential segments for development applications. In the present work, a copper nanoparticle is manufactured as a suspension in distilled water by beating a bulk copper target with laser source (532 nm wavelength, 10 ns pulse duration and 10 Hz repletion rate) via method. UV- visible absorption spectra and AFM analysis has been done to observe the effect of repetition rate for the pulsation of laser. Copper nanoparticles (Cu-NPs) were successfully synthesized with green color. The Cu- NPs have very high purity because the preparation was managed in aqueous media to eliminate ambient contaminations. Absorption spectrum shows peaks at 450 nm- 700 nm µm due to the generation of Cu-NPs.
The physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.
In recent years, infectious diseases are increasingly being encountered in clinical settings. Due to the development of antibiotic resistance and the outbreak of these diseases caused by resistant pathogenic bacteria, the pharmaceutical companies and the researchers are now searching for new unconventional antibacterial agents. Recently, in this field, the application of nanoparticles is an emerging area of nanoscience and nanotechnology. For this reason, nanotechnology has a great deal of attention from the scientific community and may provide solutions to technological and environmental challenges. A common feature that these nanoparticles exhibit their antimicrobial behavior against pathogenic bacteria. In this report, we evaluate
... Show MoreThis study employed the biosynthetic technique for creating vanadium nanoparticles (VNPs), which are affordable and user-friendly; VNPs was synthesized using vanadium sulfate (VOSO4.H2O) and a plant extract derived from Fumaria Strumii Opiz (E2) at a NaOH concentration of 0.1 M. This study aims to investigate the potential applications of utilizing an adsorbent for metal ions to achieve environmentally friendly production and assess its antibacterial activity and cytotoxicity. The reaction was conducted in an alkaline environment with a pH range of 8–12. The resulting product was subjected to various characterization techniques, including Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, x-ray diffraction (XRD), t
... Show MoreThe green production of iron oxide nanoparticles (FeONPs) due to its numerous biotechnological uses has attracted a lot of attention and clean and eco-friendly approaches in the medical field.
The objectives of this study are to demonstrate the biogenic creation of FeONPs. The search for alternative antimicrobial medicines has been prompted by growing worries about multidrug resistance.
In this paper, CdO nanoparticles prepared by pulsed laser deposition techniqueonto a porous silicon (PS) surface prepared by electrochemical etching of p-type silicon wafer with resistivity (1.5-4Ω.cm) in hydrofluoric (HF) acid of 20% concentration. Current density (15 mA/cm2) and etching times (20min). The films were characterized by the measurement of AFM, FTIR spectroscopy and electrical properties.
Atomic Force microscopy confirms the nanometric size.Chemical components during the electrochemical etching show on surface of PSchanges take place in the spectrum of CdO deposited PS when compared to as-anodized PS.
The electrical properties of prepared PS; namely current density-voltage charact
... Show MoreIn this study, gold nanoparticles (AuNPs) were synthesized using a plasma jet system at different exposure times. Using ultraviolet, visible spectra, X-ray diffraction, the nanoparticles were characterized (XRD). A Plasmon surface resonance concentrated at 530, 540, and 533 nm for the prepared AuNPs. The pattern of XRD showed that the extreme peaks of the film reflect crystalline existence. The face-centered cubic structure of the gold nanoparticles was prepared for all samples, with an average crystallite size of 25-40 nm. The effect of AuNPs in vivo on liver function levels was measured. For all doses, we notice an increase in the ranks of liver function in the blood during the period of dosing, and it begins to decrease when the dosi
... Show MoreWe manufactured the nanoparticles light emitting diode (NPs-LED) for organic and inorganic semiconductors to achieve electroluminescence (EL). The nanoparticles of Europium oxide(Eu2O3) were incorporated into the thin film layers of the organic compounds, poly(3,4,- ethylene dioxythiophene)/polystyrene sulfonic acid (PEDOT:PSS), N,N’–diphenyl-N,N’ –bis(3-methylphenyl)-1,1’-biphenyl 4,4’- diamine (poly TPD) and polymethyl methacrylate (PMMA), by the spin coating and with the help of the phase segregation method. The EL of NPs-LED, was study for the different bias voltages (20, 25, 30) V at the room temperature, from depending on the CIE 1931 color spaces and it was generated the white light at 20V, t
... Show MoreCapacitive–resistive humidity sensors based on polythiophene (P3HT) organic semiconductor as an active material hybrid with three types of metallic nanoparticles (NP) (Ag, Al, and Cu) were synthesized by pulsed laser ablation (PLA). The hybrid P3HT/metallic nanoparticles were deposited on indium-tin-oxide (ITO) substrate at room temperature. The surface morphology of theses samples was studied by using field emission scanning electron micrographs (FE-SEM), which indicated the formation of nanoparticles with grain size of about 50nm. The electrical characteristics of the sensors were examined as a function of the relative humidity levels. The sensors showed an increase in the capacitance with variation in the humidity level. Whil
... Show More