Experimental results on harmonic distortions in 13.56 MHz RF Argon glow discharge using different grounded electrodes areas and electrodes spacing are presented. The experiment is carried out at four pressure values. RF power values used are between 20 and 90 watts. The results indicate significant increase in distortions at two specific values of the cone angle enclosing the two electrodes within its geometrical volume. The computation of the cone head angle gave the symmetry discharge or asymmetry as well as when the angle is small the condition is near symmetry discharge associated with decrease in the nonlinearity.
Extension of bandwidth for high reflectance zone for the spectral region (8-14pm) was studied adapting the concept of contiguous and overlapping high reflectance stacks. Computations was carried out using the modified characteristic matrix theory restricted to near-normal incidence of light on dielectric , homogenous and isotropic symmetrical stack. Certain precautions must be taken in the choice of stacks to avoid deep —reflectance minima from developing within the extended high reflectance region. Results illustrate that the techniques of extending the high reflectance regions are applicable not only to mirrors , but also to short-and long-edge filter and to narrow band pass filters.
The influence of Cr3+ doping on the ground state properties of SrTiO 3 perovskite was evaluated using GGA-PBE approximation. Computational modeling results infered an agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ introducing into SrTiO 3 were investigated. Structural parameters assumed that Cr3+ doping alters the electronic structures of SrTiO 3 by shifting the conduction band through lower energies for the Sr and Ti sites. Besides, results showed that the band gap was reduced by approximately 50% when presenting one Cr3+ atom into the SrTiO 3 system and particularly positioned at Sr sites. Interestingly, substituting Ti site by Cr3+ led to eliminating the ban
... Show MoreThe tourism industry has become, currently, an art, an industry and a science. It is also one of the components that make up touristic regions. Tourist attractions are no longer the exclusive visits of museums and archeological sites, but also involve other service facilities. It is, therefore, imperative that the authorities should become aware of the degradation of tourist resorts and prevent them from getting worse. Moreover, the authorities should take a set of decisions concerning the protection of the urban aspect with its historical, social, and environmental dimensions, as well as, adapting it to the modern requirements that can bring comfort to the citizens and tourists at physical and psychological levels.
Structural, optical, and electrical properties of thin films of CdS : Zn prepared by the solution – growth technique are reported as a function of zinc concentration. CdS are window layers influencing the photovoltaic response of CIS solar cells. The zinc doping concentration was varied from 0.05 to 0.5 wt %, zinc doping apparently increase the band gap and lowers the resistivity. All beneficial optical properties of chemically deposited CdS thin films for application as window material in heterojunction optoelectronic devices are retained. Heat treatment in air at 400 °C for 1h modify crystalline structure, optical, and electrical properties of solution growth deposited CdS : Zn films.
Extraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM p
... Show MoreThis paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle c
... Show More