Activities associated with mining of uranium have generated significant quantities of waste materials containing uranium and other toxic metals. A qualitative and quantitative study was performed to assess the situation of nuclear pollution resulting from waste of drilling and exploration left on the surface layer of soil surrounding the abandoned uranium mine hole located in the southern of Najaf province in Iraq state. To measure the specific activity, twenty five surface soil samples were collected, prepared and analyzed by using gamma- ray spectrometer based on high counting efficiency NaI(Tl) scintillation detector. The results showed that the specific activities in Bq/kg are 37.31 to 1112.47 with mean of 268.16, 0.28 to 18.57 with mean of 6.68 and 132.25 to 678.33 with mean of 277.49 for 238U, 232Th and 40K respectively. Based on these values, radium equivalent activity in Bq/kg and absorbed dose rate one meter above the ground surface nGy/h were calculated and found to be vary 52.72 to 1189.84 and from 25.02 to 553.01. The indoor and outdoor annual effective dose rate in mSv/y ranged from 0.12 to 2.71 and from 0.03 to 0.67 respectively. To evaluate the dangerous of the study area, the external (Hex) and internal (Hin) hazard indexes are calculated and found to be ranged 0.14 to 3.21 and from 0.24 to 6.22. For the purpose of assessing the seriousness of the study area, results were compared with the world wide average. This comparison indicated that the study area is not safe from the radiological protection point view.
The best design of subsurface trickle irrigation systems requires knowledge of water and salt distribution patterns around the emitters that match the root extraction and minimize water losses. The transient distribution of water and salt in a two-dimensional homogeneous Iraqi soil domain under subsurface trickle irrigation with different settings of an emitter is investigated numerically using 2D-HYDRUS software. Three types of Iraqi soil were selected. The effect of altering different values of water application rate and initial soil water content was investigated in the developed model. The coefficient of correlation (R2) and the root-mean-square error (RMSE) was used to validate the predicted numerical res
... Show MoreThere are many aims of this book: The first aim is to develop a model equation that describes the spread of contamination through soils which can be used to determine the rate of environmental contamination by estimate the concentration of heavy metals (HMs) in soil. The developed model equation can be considered as a good representation for a problem of environmental contamination. The second aim of this work is to design two feed forward neural networks (FFNN) as an alternative accurate technique to determine the rate of environmental contamination which can be used to solve the model equation. The first network is to simulate the soil parameters which can be used as input data in the second suggested network, while the second network sim
... Show MoreIn the case where a shallow foundation does not satisfy with design requirements alone, the addition of a pile may be suitable to improve the performance of the foundation design. The lack of in-situ data and the complexity of the issues caused by lagging in the research area of pile foundations are notable. In this study, different types of piles were used under the same geometric conditions to determine the load-settlement relationships with various sandy soil relative densities. The ultimate pile capacity for each selected pile is obtained from a modified California Bearing Ratio (CBR) machine to be suitable for axial pile loading. Based on the results, the values of Qu for close-ended square pile were increased by 15
... Show MoreThis work focused on anthropogenic influences of the trace metals distribution in the soils of Kirkuk city. Sequential extraction technique was used to determine the distribution of the chemical fractions of Ag, Cd, Co, Cu, Ni, Pb, Zn, As, Cr and V in soil of Kirkuk city. This area is affected mainly by burning oil trash. Results show that these heavy metals were primarily restricted to surface horizons and mostly associated with the residual fraction (28.8 – 50%). The remnant fractions (13.8 – 33.1%) linked to the organic matter, 7.9 – 27.2% was bound to Fe-Mn oxide, 0.7 – 27.9 was bound to carbonate. Only a small amount of the total metals in the soil is exchangeable (0.5 – 4.2%) and water soluble (0 – 4.1%) fractions.
... Show MoreCyanobacteria are prokaryotic photosynthetic communities which are used in biofertilization of many plants especially rice plant. Cyanobacteria play a vital role to increase the plant's ability for salinity tolerance. Salinity is a worldwide problem which affects the growth and productivity of crops. In this work three cyanobacteria strains (Nostoc calcicola, Anabaena variabilis, and Nostoc linkia) were isolated from saline soil at Kafr El-Sheikh Governorate; North Egypt. The propagated cyanobacteria strains were used to withstand salinity of the soil and increase rice plant growth (Giza 178). The length of roots and shoot seedlings was measured for seven and forty days of cultivation, respectively. The results of this investigation showed
... Show MoreThe consequences of ionizing radiation-induced oxidative stress on radiographers in X-ray and CT-scan departments utilizing several biochemical were analyzed. The study found highly considerable discrepancies in the interplay between radiation levels and gender in terms of mean Malondialdehyde (MAD), Vitamin D3 (Vit.D3), Triiodothyronine (T3), Thyroxine (T4), and High-Density Lipoprotein (HDL), but not Thyroid Stimulating Hormone (TSH), cholesterol, triglyceride (TG) and Low-Density Lipoprotein (LDL). The findings indicated that malondialdehyde is a useful biomarker for assessing oxidative stress in radiographers with exposure to ionizing radiation.
Abstract: Plastic pollution is a major issue of the current century. This waste is found in seas, freshwater, lakes, rivers, coastal areas, and soil. In this article, this article discusses the various sources of plastic pollution, including the manufacturing process of plastics and the addition of materials to improve their properties, as well as the use of single-use plastics that are not recyclable, in addition to burning and illegal waste disposal in the open. The impact on public health is through human exposure to toxins from plastics in the environment directly through inhaling dust and fumes, consuming contaminated food and drink, and skin contact. Indirectly, when marine creatures consume microplastics, they will find their way
... Show More