The effect of α-particle irradiation on the optical absorption in nuclear track detectors (LR115) has been studied. These detectors have been irradiated with different doses. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy, that irradiation results in shifting the peaks of the optical absorption. The values of Urbach energy have been calculated from the position of steady-state optical band gap energy, for a standard sample which was unirradiated with indirect influence, has been found 1.9 eV whereas its value after irradiation 1.98 eV. In case of the direct influence, it is found to be, respectively, before irradiation 1.98 eV and after irradiation 2.05 eV. From these results, we can reveal that the values of energy gaps in direct–coincidence before and after irradiation greater than those for indirect one. The number of carbon atoms has been determined in each case for the optical energy gaps.
This document provides an examination of research, on combining orthogonal frequency division multiplexing (OFDM) and optical fibers in communication networks. With the increasing need for data speeds and efficient use of bandwidth experts have been exploring the connection between OFDM, valued for its ability to handle multipath interference and optimize spectral usage and optical fiber technology which provides superior data transmission capabilities with low signal loss and strong protection, against electromagnetic disturbances. The review summarizes discoveries from studies examining the pros and cons of using OFDM, in optical communication networks. It discusses obstacles like fiber nonlinearity, chromatic dispersion and the effects o
... Show MoreThe aim of the research is a techno-economic analysis of the use of concentrated solar energy technologies in the Iraqi city, considering the concentrated solar energy technology is a renewable energy technology that derives its resources from the sun and is replenished at a rate that exceeds its use. It is also inexhaustible and environmentally friendly energy from its environmental footprint, unlike traditional fossil energy which produces greenhouse gases and a major cause of global warming.
This research measures the costs of concentrated solar energy technology to Reduce the effects caused by other energies and work to fill part of the shortfall in the total electricity production, even at a specific percentage, in preparati
... Show MoreThe aim of the present work is to develop a new class of natural fillers based polymer composites with sawdust (S.D) which used two particle sizes (1.2 μm & 2.3 μm) and different weight percentage from sawdust (10%, 15%, and 20%). The mechanical properties studied include hardness (shore D) for all samples at normal conditions (N.C). The unsaturated polyester (UPE) and its composites samples were immersed in water for 30 days to find the effect of particle size of sawdust (S.D) on the weight gain (Mt %) by water for all the samples, also to find the effect of water on their hardness. The results show that the composite materials of sawdust (S.D) fillers which has particle size (1.2 μm) better than (2.3 μm) particle size bef
... Show MoreSome metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreIn this work, nanostructure zinc sulfide (ZnS) thin films at temperature of substrate 450 oC and thickness (120) nm have been produced by chemical spray pyrolysis method. The X-Ray Diffraction (XRD) measurements of the film showed that they have a polycrystalline structure and possessed a hexagonal phase with strong crystalline orientation of (103). The grain size was measured using scanning electron microscope (SEM) which was approximately equal to 80 nm. The linear optical measurements showed that ZnS nanostructure has direct energy gap. Nonlinear optical properties experiments were performed using Q-switched 532 nm Nd:YAG laser Z-scan system. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) estimated for Z
... Show MoreThis paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.