High temperature superconductors materials with composition Bi1.6-xSbxPb0.4Sr2Ca2-yCdyCu3OZ (x = 0, 0.1, 0.2 and 0.3) and (y = 0.01 and 0.02), were prepared by using the chemical reaction in solid-state ways, and test influence of partial replacement of Bi and Ca with Sb and Cd respectively on the superconducting properties, all samples were sintered at the same temperature (850 oC) and for the same time (195 h). The structural analysis of the prepared samples was carried out using X-ray diffraction (XRD) measurements performed at room temperature, scanning electron microscope (SEM) and dc electrical resistivity was measured as a function of temperature. It was found that the sample prepared by partial substitution of Sb at ratio (x= 0.2) and Cd with ratio (y=0.01), has the maximum value of zero resistance temperature, where was the TC(onset) and TC(0) values for this sample are (140 K) and (123 K) respectively, and XRD results reveal that this sample has the highest percentage of Bi- 2223 phase, as well as the analysis of XRD patterns of the prepared materials showed polycrystalline structure and signalize that all samples had an orthorhombic crystalline structure. It was concluded that Sb2O3 nanoparticles it may be acts as a flux agent in the matrix to lower the partial melting temperature of the samples and that leads to the promotion of the high-TC phase.
Rare earth elements (Cerium, Lanthanum and Neodymium) doped CdS thin films are prepared using the chemical Spray Pyrolysis Method with temperature 200 oC. The X-ray diffraction (XRD) analysis refers that pure CdS and CdS:Ce, CdS:La and CdS:Nd thin films showed the hexagonal crystalline phase. The crystallite size determined by the Debye-Scherrer equation and the range was (35.8– 23.76 nm), and it was confirmed by field emission scanning electron microscopy (FE-SEM). The pure and doped CdS shows a direct band gap (2.57 to 2.72 eV), which was obtained by transmittance. The room-temperature photoluminescence of pure and doped CdS shows large peak at 431 nm, and two small peaks at (530 and 610 nm). The Current – voltage measurement in da
... Show Morethe shear strength parameters of the treated and untreated gypsum soil under the effect of four soaking and drying cycles has studied in this paper, moreover examined the effect of wetting and drying cycles on the collapse potential of the soil and comparing between the behavior of the treated and untreated gypsum soil under the effect of the two conditions. Gypsum soil sample brought from Sawa lake in Al Muthana governorate with the content of gypsum 65.5%, the polyurethane polymer (PP) was used with different percentages 3, 6, and 10% to enhance the mechanical properties of gypsum soil, model was prepared to achieve four soaking and drying cycle to the samples before testing, this model consists of an Aluminum plate base with dimensions 7
... Show MoreCdS and CdTe thin films were thermally deposited onto glass substrate. The CdCl2 layer was deposited onto CdS surface. These followed by annealing for different duration times to modify the surface and interface of the junction. The diffraction patterns showed that the intensity of the peaks increased with the CdCl2/annealed treatment, and the grain sizes are increased after CdCl2/annealed treatment
Low- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show MoreIn this paper the effect of thermal annealing on the structural and optical properties of Antimony Selenide (Sb2Se3) is investigated. Sb2Se3 powder is evaporated on clean amorphous glass substrates at room temperature under high vacuum pressure (4.5×10-6 mbar) to form thin films. The structural investigation was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. (UV-Vis ) spectra in ranges from 300 to 1100 nm was used to examine the optical properties of the films .The absorption coefficient and optical energy gap of the investigated films are
... Show MoreAbstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) / TiO2. The spectrum of the solution (Emission) was studied at 772 nm. Several process parameter were Investigated as concentration of PVA, the effect of distance from nozzle tip to the grounded collector (gap distance), and final the effect of high voltage. We find the optimum condition to prepare a narrow nanofibers is at concentration of PVA 16gm, the fiber has 20nm diameter.
In this research we prepared nanofibers by electrospinning
from poly (Vinyl Alcohol) / TiO2. The spectrum of the solution
(Emission) was studied at 772 nm. Several process parameter were
Investigated as concentration of PVA, the effect of distance from
nozzle tip to the grounded collector (gap distance), and final the
effect of high voltage. We find the optimum condition to prepare a
narrow nanofibers is at concentration of PVA 16gm, the fiber has
20nm diameter
PVC/Kaolinite composites were prepared by the melt intercalation method. Mechanical properties, thermal properties, flammability and water absorption percentage of prepared samples were tested. Mechanical characteristic such as tensile strength, elongation at break; hardness and impact strength (charpy type) were measured for all samples. It was found that the tensile strength and elongation at break of PVC composites decreased with increasing kaolinite loading. Also, the hardness of the composites increases with increase in filler content .The impact strength of the composites at the beginning increases at lower kaolinite loadings is due to the lack of kaolin adhesion to the matrix. However, at higher kaolin loadings. This severe agglom
... Show MoreGypsum is one of the important construction materials in Iraq in plastering surfaces and gypsum board , the ability of gypsum to give a comfortable an aesthetic ambiance as a construction material increase the need of gypsum , The particle size , total surface area and particle size distribution were factors affecting plaster properties used for construction properties . In this study gypsum paste was used with different mixing ratios of particle size and studied the physical properties of these types of pastes named (standard consistency ,setting time ,density) and compressive strength . The results showed that the water to gypsum ratio increased with increasing the fineness of the gypsum to (0.75%) and the setting time to the maxi
... Show More