The effect of doping by methyl red and methyl blue on the absorption spectra and the optical energy gap of poly (methyl methacrylat) PMMA film have been studied. The optical transmission (T%) in the wavelength range 190-900 nm for films deposited by using solvent casting method were measured. The Absorptance data reveals that the doping affected the absorption edge as a red and blue shift in its values. The films show indirect allowed interband transitions that influenced by the doping. Optical constants; refractive index, extinction coefficient and real and imaginary part of dielectric constant were calculated and correlated with doping.
This research study the effect of Titanium dioxide on the tensile properties of
Polystyrene (PS) and Polycarbonate (PC) polymers. The stress – strain curve for pure PS
and pure PC, shows that Young modulus for PS is higher than Young modulus for PC,
because PS have higher ultimate strength than PC.
The addition of TiO2 to PS and PC will reduce the Young modulus and ultimate stress,
because the TiO2 particles will reduces or freeze the orientation of these molecular chain
and reduced the toughness of PC, while when the TiO2 were added to PS, the value of
toughness will be stabilized because TiO2 particles make these chains interlocked and the
mobility of the chains will be restrict.
Diabetic mellitus is one of the main risk factors of fungal infections because poor glycemic control is associated with a high level of glucose in blood and saliva which could be treated as nutrient to fungi. This study aimed to isolate and identification of pathogenic fungi from diabetic patient. 140 samples were taken from different places of human body from the national center of diabetic patients that related to Mustansiriyah University / college of medicine and Al-yarmuk Hospital in Baghdad. 84 sample (60%) tested positive to fungi and 56 sample (40%) tested negative to fungi. The most frequented fungi isolated have been chosen for molecular identification by PCR (Millerozyma farinosa and Candida orthopsilosis) using specific pri
... Show MoreThe present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite si
This study thoroughly investigates the potential of niobium oxide (Nb2O5) thin films as UV-A photodetectors. The films were precisely fabricated using dc reactive magnetron sputtering on Si(100) and quartz substrates, maintaining a consistent power output of 50W while varying substrate temperatures. The dominant presence of hexagonal crystal structure Nb2O5 in the films was confirmed. An increased particle diameter at 150°C substrate temperature and a reduced Nb content at higher substrate temperatures were revealed. A distinct band gap with high UV sensitivity at 350 nm was determined. Remarkably, films sputtered using 50W displayed the highest photosensitivity at 514.89%. These outstanding optoelectronic properties highlight Nb2O5 thin f
... Show MoreThe Dielectric properties of EP/TiO2 and MgO nanocomposite at
a frequency range of (102-106 Hz) were studied. The composite were
prepared with the state volume ratio (0, 0.05, 0.1) for EP/TiO2 and
MgO respectively. The impedance, dielectric constant and dielectric
loss were found decrease with frequency increase.
The excellence and uniqueness is what makes the artwork creative or not, and the School of Op. Art in Iraq came to reveal new phenomena distinct style, unique in units built, although a few worked in this aspect of the art, but they left their mark distinct, in the research, construction and installation of what binds them in heritage and civilization, it is a new vision of linking the past with the present, they adopt and engineering units may be architectural sometimes in composition, concluded a researcher at the end of the research to the main findings and conclusions, which is that more business was a square-shaped or semi-square, which is commensurate painting with visual, which is a set of vocabulary or repeat units, we do not fin
... Show MoreThrough the history of art movements, abstraction has been rotating between appearance and disappearance, mounting and stillness while its performances differed between reduction and simplification on the one hand and between the use of chromatographic and linear abstraction on the other. As a result, to what is mentioned, abstraction has appeared in many different artistic forms underlying the systematicity of the plastic art history.However, according to a contemporary point of view that comes up with the scientific revolution, the art of optical deceiving (illusion) appeared to find a hybrid art form that locates between the geometricity of abstraction and the scientific, visual and psychological foundations that are linked with the i
... Show MoreAbstract
An optoelectronic system for fog detection and visibility technique is presented .The idea of this research is based on the measurement of the atmospheric visibility by using an infrared beam emitter from LED diode. The optical scattering is used as a method to calculate the visibility. This method is applied at forward scattering within a foggy atmosphere, which is modern and has great importance for measuring visibility in seaports, airports, public roads and highways. In this paper we focus on the description of the system, principles of its operation and some results of field tests.
Keywords: fog sensor, visibility sensor, backscattering, forward scattering.
The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show More