In the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase and water absorption, hardness, flexural strength and shear stress results had show an incremental increase with volume fraction increase and with smaller particle size.
These days, the world is facing a global environmental and sustainability problem due to the increasing generation of large amounts of waste through construction and demolition work, which causes a serious problem for the environment. Therefore, this research was conducted to get rid of the waste disposal problems, including old glass and concrete, which were used as recycled fine aggregates. Seven different mixtures were prepared. The first mixture was with the used sand, which is glass sand, and it was adopted as a reference mixture (ORPC), and three mixtures were prepared for each of the recycled materials (waste concrete and glass) and partially replaced by glass sand in different proportions (25, 50, and 75) %. Some
... Show MoreThis work has been done with using of epoxy resin mixed with Granite powder were weighted by percent volume (5,10,15, and 20)%and then mixed with epoxy polymer to compose polymer composite. Hand lay-up technique is used in fabrication of the composite samples. Hardness test was carried out for the proper samples in both normal condition and after immersion in HCL (1 M and 2 M) solutions for periods ranging up to 10 weeks. After comparing the results between the polymer and their composite, the hardness increased with increasing Granite weight percent, it was found that Hardness were greater for the composites before immersion compared with their values after immersion.
In this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show MoreIn this investigation, metal matrix composites (MMCs) were manufactured by using powder technology. Aluminum 6061 is reinforced with two different ceramics particles (SiC and B4C) with different volume fractions as (3, 6, 9 and 12 wt. %). The most important applications of particulate reinforcement of aluminum matrix are: Pistons, Connecting rods etc. The specimens were prepared by using aluminum powder with 150 µm in particle size and SiC, B4C powder with 200 µm in particle size. The chosen powders were mixed by using planetary mixing setup at 250 rpm for 4hr.with zinc stearate as an activator material in steel ball milling. After mixing process the powders were compacted by hydraulic
... Show MoreThe study was reflection of the impact of the widespread use of polymer Novolak composite reinforced Glass fiber and Asbestos fiber once again with weight fraction 60% on the physical properties, which included (Hardness, Compressive deformation, compressive modulus of elasticity, Flexural modulus of elasticity, Resilience modulus, the maximum of Flexural strength, Flexural strain energy and Shear strength inner layers); it is known how much important the media as a source of bacterial contamination, which contributes directly or indirectly in the process of aging of these materials. These Novolak composite reinforced, prepared by weight fraction of (10%) and (14%) of the Hexamethylene-tetraamine (HMTA) hardener material. It
... Show MorePhoenix dactylifera l. pinnae (the green leaves of dates palm) were used as natural reinforcing (strengthening) fibers to improve the mechanical properties of polyester as a matrix material, the fibers of the green leaves of dates palm were used in two lengths, 10 and 20mm with five rates of 0, 2.5, 5, 10, and 20% , where the reinforcing with the leaves fibers increases the hardness strength from 76.5 to be about 86.55 , the Impact value raised from about 0.313 to 0.461 , in addition to that the flexural strength from 2.66 to be about 55 , and the thermal conductivity increases from 2.54 𝑤∕𝑚.℃ to 5.41 𝑤∕𝑚.℃. The results of the present search explains that the composite samples reinforced at rate 20% and 10mm fiber length
... Show MoreThis study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano Silica. Tap water has been used in mixing 12 of these mixtures, while the other 12 have been mixed using magnetic water. Nano Silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % were used. The results showed that the mixture containing 2.5%NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results showed that the fiber reinforced magnetic reactive powder concrete containing 2.5% NS (FRMRPCCNS) has the higher bulk density, dynamic modulus of elasticity, ultrasonic pulse velocity electrical resistivity and lesser absorption than fiber reinforced
... Show More