In this work copper nanopowder was created at different liquid
medias like DDDW, ethylene glycol and Polyvinylpyrrolidone
(PVP). Copper nanopowder prepared using explosion wire process
and investigated the effects of the exploding energy, wire diameter,
the type of liquid on the particle size, and the particles size
distribution. The nanoparticles are characterized by x-ray diffraction,
UV-visible absorption spectroscopy and transmission electron
microscopy (TEM). The x-ray diffraction results reveal that the
nanoparticles continue to routine lattice periodicity at reduced
particle size. The UV-Visible absorption spectrum of liquid solution
for copper nanoparticles shows sharp and single surface Plasmon
resonance (SPR) peak centered at a wavelength of 590 nm in
ethylene glycol media, but don’t have peak in PVP fluid. This peak
indicated the production of pure and spherical copper nanoparticle.
Two homopolymeric and three copolymeric additives for base oil were synthesized using octyl acrylate (OA) and tert-butyl acrylamide (TBA) monomers. The two additives named P1 and P2 are the homopolymers of TBA and OA, respectively, whereas copolymeric additives named Co1, Co2, and Co3 were synthesized by varying the ratios of TBA:OA as 1:3, 3:1 and 1:1, respectively. The prepared polymers were characterized by Fourier Transform Infrared (FTIR). Based on the solubility of synthesized polymers in base oil and reactivity ratios of TBA/OA copolymer (0.222, 0.434) calculated by Fineman-Ross method, P2, Co1, Co2 and Co3 were selected to evaluate their performance as pour point depressant (PPD), viscosity improver (VII), and anticorrosion addit
... Show MoreThe direct electron transfer behavior of hemoglobin that is immobilized onto screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) and chitosan (CS) was studied in this work. Cyclic voltametry and spectrophotometry were used to characterize the hemoglobin (Hb) bioconjunction with AgNPs and CS. Results of the modified electrode showed quasi-reversible redox peaks with a formal potential of (-0.245 V) versus Ag/AgCl in 0.1 M phosphate buffer solution (PBS), pH7, at a scan rate of 0.1 Vs-1. The charge transfer coefficient (α) was 0.48 and the apparent electron transfer rate constant (Ks) was 0.47 s-1. The electrode was used as a hydrogen peroxide biosensor with a linear response over 3 to 240 µM and a detection li
... Show MoreIn context of this paper we prepare high purity powder ZnO nanostructures by chemical method at low temperature solution and study the effect off annealing at high temperature, ZnO nanoparticles have been successfully synthesized by chemical method at 0Cᵒ solution. In this method, suddenly reaction is occurred between zinc acetate solution and sodium hydroxide solution at 0Cᵒ, annealing temperature of powder product surfactant plays an important role in morphological changes. The nanostructures have been characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), differential scanning calorimetry(DSC) and UV-visible .analysis Effect of annealing temperatures on the morphology , structure and optical properties is di
... Show MoreHydatid cyst disease is one of the most common diseases in many places in the world. The infection occurs when human and livestock drinking or eating contaminated water and food with eggs of Echinococcus granulosus worm. Surgery is the best solution to eradicate cysts and rapid healing, but it may be accompanied by some risks such as rupture of the cyst and leakage its contents of protoscolices, which leads to the return of infection and spread in the body. Several methods have been used to reduce the risks of surgery, including withdrawal of hydatid fluid and its contents and injection scolicidal substances like ethanol and others. Researchers have recently tested the efficiency of nanoparticles such as selenium, silver, and gold nanoparti
... Show MoreThis investigation was carried out to estimate the antiparasitic potential of chitosan nanoparticles loaded with paromomycin against
In the current research, an eco-biosynthesis method for synthesizing silver nanoparticles (AgNPs) is reported using thymus vulgaris leaves (T. vulgaris) extracts. The optical and structural properties of the nanoparticles is determined using UV-visible, x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). In addition, the synthesis factors such as the temperature, the molar ratio of silver nitride and thymus vulgaris leaves extract have been investigated. The XRD pattern presented higher intensity for the five characteristic peaks of silver. FESEM images for same samples indicated that the particle size was distributed between 24-56 nm. In addition, it’s observed the formation of some aggregated Ag particles
... Show More