A nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.
The Enhanced Thematic Mapper Plus (ETM+) that loaded onboard the Landsat-7 satellite was launched on 15 April 1999. After 4 years, the image collected by this sensor was greatly impacted by the failure of the system’s Scan Line Corrector (SLC), a radiometry error.The median filter is one of the basic building blocks in many image processing situations. Digital images are often distorted by impulse noise due to errors generated by the noise sensor, errors that occur during the conversion of signals from analog-to-digital, as well as errors generated in communication channels. This error inevitably leads to a change in the intensity of some pixels, while some pixels remain unchanged. To remove impulse noise and improve the quality of the
... Show MoreThis paper aims to study the second-order geometric nonlinearity effects of P-Delta on the dynamic response of tall reinforced concrete buildings due to a wide range of earthquake ground motion forces, including minor earthquake up to moderate and strong earthquakes. The frequency domain dynamic analysis procedure was used for response assessment. Reinforced concrete building models with different heights up to 50 stories were analyzed. The finite element software ETABS (version 16.0.3) was used to analyze reinforced concrete building models.
The study reveals that the percentage increase in buildings' sway and drift due to P-Delta effects are nearly constant for specific building height irrespective of the seism
... Show MoreDatabase is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r
... Show MoreThe lowest layer of the atmosphere is called the atmospheric mixed layer, characterized by small-scale, irregular air motions defined by winds that change in speed and direction. Aerosol radiative effects impact the atmospheric boundary layer (ABL), which holds most aerosols in the lower atmosphere. Aerosol absorption and scattering both lower the quantity of solar energy that reaches the ground, which has an impact on the spectral signature of the land coverings. In this study, 51 locations in downtown Baghdad were chosen for four different types of land cover (water bodies, farms, open areas, and residential areas) for Sentinel 2 satellite imagery, and the time the pictures were taken was 8:00 am ( 22 March, 22 June, 20 September,
... Show MoreA content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreSpot panchromatic satellite image had been employed to study and know the difference Between ground and satellite data( DN ,its values varies from 0-255) where it is necessary to convert these DN values to absolute radiance values through special equations ,later it converted to spectral reflectance values .In this study a monitoring of the environmental effect resulted from throwing the sewage drainages pollutants (industrial and home) into the Tigris river water in Mosul, was achieved, which have an effect mostly on physical characters specially color and turbidity which lead to the variation in Spectral Reflectance of the river water ,and it could be detected by using many remote sensing techniques. The contaminated areas within th
... Show MoreIn this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water
... Show More