Polyaniline (PANI) and Ag/PANI nanocomposite thin films have prepared by microwave induced plasma. The Ag powder of average particle size of 50 nm, were used to prepare Ag/PANI nanocomposite thin films. The Ag/PANI nanocomposite thin films prepared by polymerization in plasma and characterized by UV-VIS, FTIR, AFM and SEM to study the effect of silver nanoparticles on the optical properties, morphology and structure of the thin films. The optical properties studies showed that the energy band gap of the Ag/PANI (5%wt silver) decreased from 3.6 to 3.2 eV, where the substrate location varied from 4.4 to 3.4 cm from the axis of the cylindrical plasma chamber. Also the optical energy gap decreased systematically from 3.3 to 3 eV with increasing Ag nanoparticles, where Ag concentration increased from 5% to 11%wt. The FTIR measurement showed a shifting in the FTIR absorption peaks with Ag concentration. AFM and SEM images indicate that there are a few clusters of Ag and there is a uniform distribution of the Ag nanoparticles in the PANI matrix. It can be concluded that Ag/PANI nanocomposite thin films with controlled optical energy band gap can be prepared by microwave induced plasma technique.
This study aims to analyze the spectral properties of plasma produced from rice husk(Rh) using the laser breakdown spectroscopy (LIBS) method. The plasma generation process used the fundamental harmonic (1064 nm) of a Q-switched Nd:YAG laser. Yttrium aluminum garnet (YAG) is a man-made crystalline material. The laser fired pulses with a duration of 10 ns and a repetition rate of 6 Hz. Thus, the energy outputs achieved were 50–200 mJ at the wavelength of 1064 (nm). The silica content in the rice hulls was verified using an XRF measurement, which revealed the presence of silica in the rice hulls in a high percentage. Precise beam focusing was achieved by focusing the laser on the target material. This target material is placed with
... Show MoreThin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.
The preparation of low cost activated carbon from date stones and microwave method by using K2CO3 as chemical activator were investigated.
The prepared activated carbon was used to remove fluoroquinolones antibiotics from aqueous solution. The characterizations of the activated carbon is represented by surface area, pore volume, ash content, moisture content, bulk density, and iodine number. The adsorbed fluoroquinolones antibiotics are Ciprofloxcin (CIP), Norfloxcin (NOR) and Levofloxcin (LEVO). Different variables as pH, initial concentrations and contact time were studied to show the efficieny of prepared activated carbon. The experimental adsorption data were analyzed by Lungmuir, Freundlich
... Show MoreIn this study, a system of nonthermal plasma that was operated under atmospheric pressure and was powered by argon gas was employed. The particular plasma properties are affected by changes in the Ar gas flow ranges from 0.5 to 2.5 l/min, product by stream of the plasma jet that is utilized. By using the aforementioned method generated from AC and DC. After placing Ar gas as the cathode, which represents the negative pole, flows toward the anode, which is represented by a tiny metal plate of Zn measuring 6 × 1 cm2 in size, with a submerged part of 4 cm2 long, with both types of current employed having a high voltage of 13.5 kV and the frequency of AC was 30 kHz, we measured these variable parameters. It has been shown that when argon f
... Show MoreCuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.
ZnS thin films were grown onto glass substrates by flash evaporation technique, the effects of ? – rays on the optical constants of ZnS these films were studied. It was found that ? – rays affected all the parameters under investigation.
Compounds were prepared from In2O3 doped SnO2 with different doping ratio by mixing and sintering at 1000oC. Pulsed Laser Deposition PLD was used to deposit thin films of different doping ratio In2O3: SnO2 (0, 1, 3, 5, 7 and 9 % wt.) on glass and p-type wafer Si(111) substrates at ambient temperature under vacuum of 10-3 bar thickness of ~100nm. X-ray diffraction and atomic force microscopy were used to examine the structural type, grain size and morphology of the prepared thin films. The results show the structures of thin films was also polycrystalline, and the predominate peaks are identical with standard cards ITO. On the other side the prepared thin films declared a reduction of degree of crystallinity with the increase of doping ra
... Show MoreZnIn2(Se1-xTex)4 (ZIST) chalcopyrite semiconductor thin films at various contents (x = 0.0, 0.2, and 0.4) are deposited on glass and p type silicon (111) substrate to produce heterojunction solar cell by using the thermal evaporation technique at RT where the thickness of 500 nm with a vacuum of 1×10-5 mbar and a deposited rates of 5.1 nm/s. This study focuses on how differing x content effect on the factors affecting the solar cell characteristics of ZIST thin film and n-ZIST/p-Si heterojunction. X-ray diffraction XRD investigation shows that this structure of ZIST film is polycrystalline and tetragonal, with (112) preferred orientation at 2θ ≈ 27.01. Moreover, atomic force microscopy AFM is studying the external morphology of
... Show MoreThe electrical properties of the AlNiCo thin films with thickness (1000oA) deposited on glass substrates using Ion – Beam sputtering (IBS) technique under vacuum <10-6 torr have been studied . Also it studied the effect of annealing temperature from this films , It is found that the effective energy decrease with increase of temperature and the conductivity decrease with increase temperature 323oK but after this degree the conductivity increasing .
CdO films were deposited on substrates from glass, Silicon and Porous silicon by thermal chemical spray pyrolysis technique with different thicknesses (130 and 438.46) nm. Measurements of X-ray diffraction of CdO thin film proved that the structure of the Polycrystalline is cubic lattice, and its crystallite size is located within nano scale range where the perfect orientation is (200). The results show that the surface’s roughness and the root mean square increased with increasing the thickness of prepared films. The UV-Visible measurements show that the CdO films with different thicknesses possess an allowed direct transition with band gap (4) eV. AFM measurement revealed that the silicon porosity located in nano range. Cadmium oxide f
... Show More