The most important environmental constraints at the present time
is the accumulation of glass waste (transparent glass bottles). A lot of
experiments and research have been made on waste and recycling
glass to get use it as much as possible. This research using recycling
of locally waste colorless glass to turn them into raw materials as
alternative of certain percentages of cement to save the environment
from glass waste and reduce some of the disadvantages of cement
with conserving the mechanical and physical properties of concrete
made. A set of required samples were prepared for mechanical test
with different weight percentage of waste glass (2%, 4%, 5%, 6%,
8%, 10%, 15%, 20% and 25%). American standard for calibration
(ASTM C109 / C109M-02) to measure the compressive strength
where the results showed that the Maximum compressive strength
was obtained at the low weight percentage replacement 2%, 4% and
5% 6% which is 67.12, 69.24, 62.56 and 59.96 Mpa respectively. for
originally mix recorded bending resistance (54.16) Mpa.
A long-span Prestressed Concrete Hunched Beam with Multi-Opening has been developed as an alternative to steel structural elements. The commercial finite element package ABAQUS/CAE version 2019 has been utilized. This article has presented the results of three-dimensional numerical simulations investigating the flexural behaviour of existing experimental work of supported Prestressed Concrete Hunched Beams with multiple openings of varying shapes under static monotonic loads. Insertion openings in such a beam lead to concentrate stresses at the corners of these openings; as a result, extensive cracking would appear. Correlation between numerical models and empirical work has also been discussed regarding load displacemen
... Show MoreIt is suitable to use precast steel-concrete composite beams to quickly assemble a bridge or a building, particularly in isolated regions where cast-in-situ concrete is not a practical option. If steel-concrete composite beams are designed to allow demountability, they can also be extremely useful in the aftermath of natural disasters, such as earthquakes or flooding, to replace damaged infrastructure. Furthermore, rapid replacement of slabs is extremely beneficial in case of severe deterioration due to long-term stressors such as fatigue or corrosion. The only way to rapidly assemble and disassemble a steel-concrete composite structure is to use demountable shear connectors to connect/disconnect the steel beams to/from the concrete slab. I
... Show MoreThis paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the reference specim
... Show MoreThis paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the refe
... Show MoreIn this study, two types of mixes were adopted by using two grading of coarse aggregate. The practical side of this study was to produce no-fine aggregate concrete by using crushed clay brick aggregates. The durability of the produced concrete and internal sulfate attack was studied. For durability assessment, it is found that the no-fine concrete made with crushed brick aggregate lost about (15-25) % of its compressive strength after being subjected to 60 cycles of wetting and drying with age 120 days. The curing condition showed that the water curing improved the compressive strength with a rate higher than that when sealed or air dry curing were used. The crushed brick no-fine concrete de
... Show MoreMJ Abbas, AK Hussein, Journal of Physical Education, 2019
t-Self-Compacting Concrete (SCC) reduces environmental noise and has more workability. This research presents an investigation of the behavior of SCC under mechanical loading (impact loading). Two types of cement have been used to produce SCC mixtures, Ordinary Portland Cement (OPC) and Portland Limestone Cement (PLC), which reduces the emission of carbon dioxide during the manufacturing process. The mixes were reinforced with Carbon Fiber Reinforced Polymer (CFRP) which is usually used to improve the seismic performance of masonry walls, to replace lost steel reinforcements, or to increase column strength and ductility. Workability tests were carried out for fresh SCC. Prepared concrete slabs of 500×500×50mm were tested for lo
... Show More