The study included adding antimony oxide to mixtures of coating metal surfaces (Enameling), after it was selected ceramic materials used in the coating metal pieces of the type of steel and cast iron in two layers. The first is called a ground coat and the second is a cover coat.
Ceramic materials layer for ground coat have been melted down in
platinum crucible at a temperature of 1200oC to prepare the glass
mixture (Frit). It was coated on metals at a temperature of 780oC for
two minutes, while the second layer was prepared glass mixture
(Frit) at a temperature of 1200oC, but was coated at a temperature of
760oC for two minutes.
Underwent tests crystalline state of powders (Frits) and enameled samples using X-ray diffraction technique and found that the process of powders and ground coat layer is random, while the cover layer included having developed a silicon oxide and titanium oxide phases. It was measured density, coating thickness and Knoop hardness for each layer. As well as practical tests conducted dipping enameled samples in diluted and concentrated sulfuric acid, as well as diluted and concentrated hydrochloric acid for three days at a temperature of 100oC. The samples showed good resistance against these acids. The addition of antimony oxide reduced the presence of bubbles in the coated cast iron and enhancement physical and mechanical properties.
Conducted the study of the experimental conditions of the interaction of glass the visual Alpmuth containing 15% Mall of zinc with phosphoric acid ????? various degrees of thermal and clip areas prone to interact different way turntable
This study investigated the treatment of dairy wastewater using the electrocoagulation method with iron filings as electrodes. The study dealt with real samples collected from local factory for dairy products in Baghdad. The Response Surface Methodology (RSM) was used to optimize five experimental variables at six levels for each variable, for estimating chemical oxygen demand (COD) removal efficiency. These variables were the distance between electrodes, detention time, dosage of NaCl as electrolyte, initial COD concentration, and current density. RSM was investigated the direct and complex interaction effects between parameters to estimate the optimum values. The respective optimum value was 1 cm for the distance between electrodes, (6
... Show MoreTitanium alloy (Ti-6Al-4V or Gr.23) was widely used as a dental alloy. In the current study, polymerization of eugenol (PE) on Gr.23 titanium alloys was conducted by an electrochemical process before and after being treated by Micro Arc Oxidation (MAO). The formed films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion behavior of Gr.23 alloy in an artificial saliva environment at a temperature range of 293–323 K has been studied and assessed by means of electrochemical polarization and impedance spectroscopy techniques. Three cases are taken into consideration; bare Gr.23, Gr.23 coated by PE, and Gr.23 coated by PE after MAO treatment. The maxi
... Show MoreIn this paper we present the first ever measured experimental electron momentum density of Cu2Sb at an intermediate resolution (0.6 a.u.) using 59.54 keV 241Am Compton spectrometer. The measurements are compared with the theoretical Compton profiles using density function theory (DFT) within a linear combination of an atomic orbitals (LCAO) method. In DFT calculation, Perdew-Burke-Ernzerhof (PBE) scheme is employed to treat correlation whereas exchange is included by following the Becke scheme. It is seen that various approximations within LCAO-DFT show relatively better agreement with the experimental Compton data. Ionic model calculations for a number of configurations (Cu+x/2)2(Sb-x) (0.0≤x≤2.0) are also performed utilizing free a
... Show MoreMetal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spe
... Show MoreBackground: The iron deficiency anemia along with hyperphosphatemia are the main complications of dialysis patients. Traditional iron supplement has been failed to correct iron deficiency anemia, therefore, the current study aimed to investigate the efficacy and tolerability of new phosphate binder, ferric citrate, in a sample of Iraqi patients with end stage renal disease on maintenance hemodialysis. Method: Prospective, randomized, open label, active controlled trial was conducted in one center for dialysis in Babylon governance. Patients were randomized to receive ferric citrate with dose of 6 g/d and calcium carbonate with dose of 3 g/d for eight weeks. Hemoglobin concentration, mean corpuscular hemoglobin concentration and count o
... Show MoreAbstract
Magnetic abrasive finishing (MAF) is one of the advanced finishing processes, which produces a high level of surface quality and is primarily controlled by a magnetic field. This paper study the effect of the magnetic abrasive finishing system on the material removal rate (MRR) and surface roughness (Ra) in terms of magnetic abrasive finishing system for eight of input parameters, and three levels according to Taguchi array (L27) and using the regression model to analysis the output (results). These parameters are the (Poles geometry angle, Gap between the two magnetic poles, Grain size powder, Doze of the ferromagnetic abrasive powder, DC current, Workpiece velocity, Magnetic poles velocity, and Finishi
... Show More