Cadmium sulfide photodetector was fabricated. The CdS nano
powder has been prepared by a chemical method and deposited as a
thin film on both silicon and porous p- type silicon substrates by spin
coating technique. Structural, morphological, optical and electrical
properties of the prepared CdS nano powder are studied. The X-ray
analysis shows that the obtained powder is CdS with predominantly
hexagonal phase. The Hall measurements show that the nano powder
is n-type with carrier concentration of about (-5.4×1010) cm-3. The
response time of fabricated detector was measured by illuminating
the sample with visible radiation and its value was 5.25 msec. The
specific detectivity of the fabricated detector is found to be (9×1011
W-1 .Hz1/2.Cm- 1). The responsivity was (0.03A/W).
Near-ideal p-CdS/n-Si heterojunction band edge lineup has been investigated for the first time with aid of I-V and C-V measurements. The heterojunction was manufactured by deposition of CdS films prepared by chemical spray pyrolysis technique (CSP) on monocrystalline n-type silicon. The experimental data of the conduction band offset Ec and valence band offset Ec were compared with theoretical values. The band offset Ec=530meV and Ev=770meV obtained at 300K. The energy band diagram of p-CdS/n-Si HJ was constructed. C-V measurements depict that the junction was an abrupt type and the built-in voltage was determined from C-2-V plot
Crystalline silicon (c-Si) has low optical absorption due to its high surface reflection of incident light. Nanotexturing of c-Si which produces black silicon (b-Si) offers a promising solution. In this work, effect of H2O2 concentrations towards surface morphological and optical properties of b-Si fabricated by two-step silver-assisted wet chemical etching (Ag-based two-step MACE) for potential photovoltaic (PV) applications is presented. The method involves a 30 s deposition of silver nanoparticles (Ag NPs) in an aqueous solution of AgNO3:HF (5:6) and an optimized etching in HF:H2O2:DI H2O solution under 0.62 M, 1.85 M, 2.47 M, and 3.7 M concentrations of H2O<
... Show MoreDate palm silver nanoparticles are a green synthesis method used as antibacterial agents. Today,
there is a considerable interest in it because it is safe, nontoxic, low costly and ecofriendly. Biofilm bacteria
existing in marketed local milk is at highly risk on population health and may be life-threatening as most
biofilm-forming bacteria are multidrug resistance. The goal of current study is to eradicate biofilm-forming
bacteria by alternative treatment green synthesis silver nanoparticles. The biofilm formation by bacterial
isolates was detected by Congo red method. The silver nanoparticles were prepared from date palm
(khestawy) fruit extract. The formed nanoparticles were characterized with UV-Vis
A metal-assisted chemical etching process employing p-type silicon wafers with varied etching durations is used to produce silicon nanowires. Silver nanoparticles prepared by chemical deposition are utilized as a catalyst in the formation of silicon nanowires. Images from field emission scanning electron microscopy confirmed that the diameter of SiNWs grows when the etching duration is increased. The photoelectrochemical cell's characteristics were investigated using p-type silicon nanowires as working electrodes. Linear sweep voltammetry (J-V) measurements on p-SiNWs confirmed that photocurrent density rose from 0.20 mA cm-2 to 0.92 mA cm-2 as the etching duration of prepared SiNWs increased from 15 to 30 min. The
... Show MoreSilicon nanowire arrays (SiNWs) are created utilizing the metal-assisted chemical etching method with an Ag metal as a catalyst and different etching time of 15, 30, and 60 minutes using n-Si (100). Physical properties such as structural, surface morphology, and optical properties of the prepared SiNWs are studied. The diameter of prepared SiNWs ranged from 20 to 280 nm, and the reflectance in the visible part of the wavelength spectrum was less than 1% for all prepared samples. The obtained energy gap of prepared SiNWs was around 2 eV, which is higher than the energy gap of bulk silicon. X-ray diffraction (XRD) has diffraction peaks at 68.70o for all prepared samples. The heterojunction solar cell was fabricated based on the
... Show MoreSilicon (Si)-based materials are sought in different engineering applications including Civil, Mechanical, Chemical, Materials, Energy and Minerals engineering. Silicon and Silicon dioxide are processed extensively in the industries in granular form, for example to develop durable concrete, shock and fracture resistant materials, biological, optical, mechanical and electronic devices which offer significant advantages over existing technologies. Here we focus on the constitutive behaviour of Si-based granular materials under mechanical shearing. In the recent times, it is widely recognised in the literature that the microscopic origin of shear strength in granular assemblies are associated with their