In this research study Hardness (shore D), Water absorption,
Flexural, Impact Test, and Fracture Toughness of polymer nano
composites. The polymer nano composites based on unsaturated
polyester resin reinforced with Kevlar fibers (K.F). The samples are
attended by hand lay – up method according to (Rule mixture) for
various volume fractions of unsaturated polyester resin, fiber and
carbon nanotube. The polyester resin was matrix strengthened with
3% volume fraction from Kevlar fiber and (0.5%, 1%, 1.5%, 2%)
volume fractions of carbon nanotube. The water absorption, hardness
(shore D), flexural test, impact test and toughness fracture properties
were studied. Results showed that the water absorption increase with
volume fraction increase of fiber with Carbon Nanotube, the sample
(polyester+3%K.F+0.5% CNTs) has lower water absorption than
other samples. The hardness (shore D), flexural test, impact test and
toughness fracture for the sample (polyester+3%C.F+0.5% CNTs)
has higher value for Nano- composites.
To evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were
... Show MoreConcrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into
... Show MoreBackground: This study was aimed to investigate the effect of three lingual button (Nickel free / rectangular base, Nickel free / round base and Composite) and bonding environment, wet and dry enamel surface, on: the shear bond strength (SBS) of light and self-cured Resin Modified Glass Ionomer Cements, and the debonding failure sites. Materials and method: One hundred twenty no-carious, free of cracks maxillary first premolar teeth were selected. Three types of orthodontic lingual buttons were used in this study: Nickel free / rectangular base, Nickel free / round base and Composite buttons. The teeth were divided into two groups of sixty teeth each. One group was used for testing the chemically cured GC Fuji Ortho Resin modified Glass Io
... Show MoreThe goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with different thi
... Show MoreAbstract Additive manufacturing has been recently emerged as an adaptable production process that can fundamentally affect traditional manufacturing in the future. Due to its manufacturing strategy, selective laser melting (SLM) is suitable for complicated configurations. Investigating the potential effects of scanning speed and laser power on the porosity, corrosion resistance and hardness of AISI 316L stainless steel produced by SLM is the goal of this work. When compared to rolled stainless steel, the improvement is noticeable. To examine the microstructure of the samples, the optical microscopy (OM), scanning electron microscopy (SEM), and EDX have been utilized. Hardness and tensile strength were us
... Show MoreIn this work, some of new 2-benzylidenehydrazinecarbothioamide derivatives have been prepared by condensation of thiosemicarbazide and different substituted aromatic benzaldehydes in presence of glacial acetic acid to give compounds (1-6), these compounds have characterized by its physical properties and spectroscopic methods. This work also included theoretical study to prove the ability of these compounds as corrosion inhibitors; The program package of Gaussian 09W with its graphical user interface GaussView 5.0 had used for this purpose; the methods of Density Functional Theory (DFT) with basis set of 6-311G (d,p) / hybrid function of B3LYP and semiempirical method of PM3 have been used, the study included theoretical simulation
... Show MoreThe main goal of this work is to put a simple model of the spectral energy distribution of binary stars called WW Cha. This model is built up on the extracted data from various telescopes and archives for the target WW Cha stars and then analyzing them using a python environment. The result of the fitting proposes that there are two protoplanetary disks around the WW Cha star, with different physical properties for each disk, such as the size of the inner disk being 10 AU, while the size of the outer disk being 300 AU. The shape of the outer disk is a flaring disk not a flat disk according to the value of the power law for the surface density (1.5). The emission in the disk is caused by small amorphous olivine grains rangin
... Show MoreHigh performance self-consolidating concrete HP-SCC is one of the most complex types of concrete which have the capacity to consolidated under its own weight, have excellent homogeneity and high durability. This study aims to focus on the possibility of using industrial by-products like Silica fumes SF in the preparation of HP-SCC enhanced with discrete steel fibers (DSF) and monofilament polypropylene fibers (PPF). From experimental results, it was found that using DSF with volume fraction of 0.50 %; a highly improvements were gained in the mechanical properties of HP-SCC. The compressive strength, splitting tensile strength, flexural strength and elastic modulus improved about 65.7 %, 70.5 %, 41.7 % and 80.3 % at 28 days age, respectively
... Show MoreA comprehensive practical study of typical mechanical properties of welded Aluminum alloy AA7020-T6 (Al-Mg-Zn), adopting friction stir welding (FSW) technique and conventional metal inert gas (MIG) technique, is well achieved in this work for real comparison purposes. The essences of present output findings were concentrated upon the FSW samples in respect to that MIG ones which can be summarized in the increase of the ultimate tensile strength for FSW was 340 MPa while it was 232 MPa for MIG welding, where it was for base metal 400 MPa. The minimum microhardness value for FSW was recorded at HAZ and it was 133 HV0.05 while it was 70 HV0.05 for MIG weld at the welding metal. The FSW produce 2470 N higher than MIG welding in the bending t
... Show More