Copper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc filter and then the permeability, porosity, and filtration efficiency were determined which showed good efficiency.
Nanoceria have shown numerous unique characteristics, such as biocompatibility and are excellent agents for biological applications. The aim of this study is to investigate cerium oxide nanoparticles for 2, 2- diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging activity and their ability to offer protection against ionizing radiation. In vitro antioxidant activity study of nanoceria particles has shown good free radical scavenging activity for DPPH radical assayed within a concentration range of 0.01 to 0.05 g/l, at higher concentrations of nanoparticles showed reverse trend in absorbance and inhibition indicating this finite rang of concentration is suitable for scavenging free radicals, also nanoparticles were found to ha
... Show MoreIn this research, a low cost, portable, disposable, environment friendly and an easy to use lab-on-paper platform sensor was made. The sensor was constructed using a mixture of Rhodamine-6G and gold nanoparticles also Sodium chloride salt. Drop–casting method was utilized as a technique to make a platform which is a commercial office paper. A substrate was characterized using Field Emission Scanning Electron Microscope, Fourier transform infrared spectroscopy, UV-visible spectrophotometer and Raman Spectrometer. Rh-6G Raman signal was enhanced based on Surface Enhanced Raman Spectroscopy technique utilized gold nanoparticles. High Enhancement factor of Plasmonic commercial office paper reaches up to 0.9 x105 because of local surface pl
... Show MoreBackground: A great dental and biomedical interest had been paid to silver nanoparticles because of their antimicrobial activity. Objective: To evaluate the antimicrobial and cytotoxic activity of a newly developed Nano-silver fluoride that was synthesized from moringa oleifera leaf extract against S. mutants. Material and method: The green synthesis method was used to prepare Nano-silver fluoride from moringa oleifera leaf extract. The minimum inhibitory concentration and the minimum bactericidal concentration were evaluated using brain heart infusion plates, while the cytotoxicity was evaluated by the hemolytic activity. Results: Nano-silver fluoride had a bactericidal and bacteriostatic effect (MIC was 60 ppm and MBC was 120 pp
... Show MoreA novel azo dye ligand namely (2-(pyridin-3-yldiazenyl)naphthalen-1-ol (HPYNA), was synthesized by the coupling reaction of diazonium salt of 3-aminopyridine with naphthol. The palladium(II) complex for HPYNA ligand was prepared by reacting palladium(II) ions with the HPYNA ligand. These synthesized compounds were characterized using different techniques, including mass, 1H-NMR, infrared, and UV-Vis spectroscopy. The infrared results show that the azo ligand reacts as a bidentate via the oxygen atom of phenol and nitrogen atom of the azo group. The palladium(II) complex is square-planer with diamagnetic properties depending on the results of electronic transitions and magnetic sensitivity. The HPYNA ligand and palladium complex show
... Show Morea laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the rod that appears for Au NPs, in addition to that, TEM has been an indication of the fact that syn
... Show MoreThe current study aimed the syntheses and characterizations of Gold nanoparticles (Au NPs) using a laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the
... Show MoreFlow-injection (FI) spectrophotometric method has been developed for the analysis of thymol in pharmaceutical preparations. The method is based on organic coupling reaction between thymol and 4-amino antipyrine in the presence of alkaline medium to form an intense stable red color complex with copper nitrate that has a maximum absorption at 490 nm. Optimum conditions for determination of the drug was investigated .The calibration graph was linear over the range of 5-500 µg.ml-1 of thymol . The limit of detection (LOD) and limit of quantification (LOQ) were 1.81 ?g mL-1 and 3.60 ?g mL-1 respectively .The proposed method was applied satisfactorily to the determination of thymol in mouth wash preparations. The procedure is characterized by
... Show More