Digital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection after classification have been implemented between the new classes of adopted images, and finally change detection using matched filter was applied on the region of interest for each class.
Olfactory impairment and abnormal frontal EEG oscillations are recognized as early markers of Alzheimer’s disease (AD). Using a publicly available olfactory EEG dataset of 35 subjects spanning normal cognition, amnestic mild cognitive impairment (aMCI), and AD, each with MMSE scores and demographics, stimulus-locked epochs from four electrodes (Fp1, Fz, Cz, Pz) were processed with wavelet-based time–frequency analysis. Band-limited power ratios (delta, theta, alpha, beta) were computed as log-transformed post-odor/baseline values and aggregated to subject-level features. Statistical analyses revealed graded attenuation of odor-evoked frontal (Fp1) band-power ratios across groups, with significant differences in several band–od
... Show MoreThe agriculture around the world faced many difficulties and the important was to reduce inputs of chemical fertilizers and pesticides and increase the total yield specially with the continuous grow of populations numbers at the world expected to reach more than 9 billion by 2050. In other hand there are other problems which make the challenges bigger such as wars, biotic and abiotic stress, and diseases. The scientists tried to find solutions by using Nano-fertilization which consider a modern way to quickly grow up the yield and decrease use the chemicals. The use of nanotechnology may be destructive on human and the environment due to fast accumulation in the tissues of alive bodie
Automatic recognition of individuals is very important in modern eras. Biometric techniques have emerged as an answer to the matter of automatic individual recognition. This paper tends to give a technique to detect pupil which is a mixture of easy morphological operations and Hough Transform (HT) is presented in this paper. The circular area of the eye and pupil is divided by the morphological filter as well as the Hough Transform (HT) where the local Iris area has been converted into a rectangular block for the purpose of calculating inconsistencies in the image. This method is implemented and tested on the Chinese Academy of Sciences (CASIA V4) iris image database 249 person and the IIT Delhi (IITD) iris
... Show More<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreThe interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreLinear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreCrime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreDiyala Governorate has many unique and diverse geomorphological features that the region enjoys, which are among the attractions for natural tourism, as the natural environment is considered a maker of tourism. The importance of geomorphological aspects as components of natural tourism is due to their association with tourism and entertainment, as a result of the enjoyment of many geomorphological aspects of the beauty of its natural landscape on the one hand, and on the other hand, the association of these manifestations with different types of tourism activity. Any tourist area as it is the main factor for tourist attractions, such as the presence of the Hamrin hills, and sand dunes. Planning for the development of tourism activity in the
... Show More