In this work, the plasma parameters (electron temperature and
electron density) were determined by optical emission spectroscopy
(OES) produced by the RF magnetron Zn plasma produced by
oxygen and argon at different working pressure. The spectrum was
recorded by spectrometer supplied with CCD camera, computer and
NIST standard of neutral and ionic lines of Zn, argon and oxygen.
The effects of pressure on plasma parameters were studied and a
comparison between the two gasses was made.
With the continuous downscaling of semiconductor processes, the growing power density and thermal issues in multicore processors become more and more challenging, thus reliable dynamic thermal management (DTM) is required to prevent severe challenges in system performance. The accuracy of the thermal profile, delivered to the DTM manager, plays a critical role in the efficiency and reliability of DTM, different sources of noise and variations in deep submicron (DSM) technologies severely affecting the thermal data that can lead to significant degradation of DTM performance. In this article, we propose a novel fault-tolerance scheme exploiting approximate computing to mitigate the DSM effects on DTM efficiency. Approximate computing in hardw
... Show MoreAbstract This research scrutinizes the impact of external magnetic field strength variations on plasma jet parameters to enhance its performance and flexibility. Plasma jets are widely used for their high thermal and kinetic energy in both medical and industrial fields. The study employs optical emission spectroscopy to measure electron temperature, electron density, and plasma frequency in a plasma jet subjected to varying magnetic field strengths (25, 50, 100, 150, and 250 mT). The results indicate that a stronger magnetic field results in higher electron temperature (1.485 to 1.991 eV), electron density (5.405 × 1017 to 7.095 × 1017), and plasma frequency 7.382 × 1012 to 8.253 × 1012 Hz. As well as the research investigates the influ
... Show MoreThis research was conducted to measure the safety of heat stable enterotoxin a (STa) produced by enterotoxigenic Escherichia coli, through studying its toxic effect on human blood lymphocyte, since it showed a promising effect in reducing the proliferation of colorectal cancer cells. the cytogenetic effects of (STa) by using five different concentrations (100, 200, 400, 800 and 1600μg/ml) in comparison with negative (PBS, Phosphate buffer saline) and positive (MMC, Mitomycin C) at concentration of 5μg/ml, controls on human blood lymphocytes obtained from both (10) normal healthy persons and (20) colorectal cancer patients was measured by employing the following parameters: mitotic index, blast index, chromosomal aberrations and micronucle
... Show MoreBackground: The best material for dental implants is polyetherketoneketone (PEKK). However, this substance is neither osteoinductive nor osteoconductive, preventing direct bone apposition. Modifying the PEKK with bioactive elements like strontium hydroxyapatite is one method to overcome this (Sr-HA). Due to the technique's capacity to provide better control over the coating's properties, RF magnetron sputtering has been found to be a particularly useful technique for deposition. Materials and methods : With specific sputtering conditions, the RF magnetron technique was employed to provide a homogeneous and thin coating on Polyetherketoneketone substrates.. the coatings were characterized by Contact angle, adhesion test, X-ray
... Show MoreAbstract
The aim of this work is to create a power control system for wind turbines based on fuzzy logic. Three power control loop was considered including: changing the pitch angle of the blade, changing the length of the blade and turning the nacelle. The stochastic law was given for changes and instant inaccurate assessment of wind conditions changes. Two different algorithms were used for fuzzy inference in the control loop, the Mamdani and Larsen algorithms. These two different algorithms are materialized and developed in this study in Matlab-Fuzzy logic toolbox which has been practically implemented using necessary intelligent control system in electrical engineerin
... Show More
Background: Polymethylmethacrylate (PMMA) is the most ‎commonly used mâ€aterial in denture construction. This material is ‎far from ideal in fulfilling the‎ mechanical requirements, like low impact and transverse strength and poor thermal conductivity are present in this material. The purpose of this study was to study the effect of addition a composite which include 1%wt silanized silicone dioxide nano fillers (SiO2) and 1wt% oxygen plasma treated polypropylene fiber (PP) on some properties of heat cured acrylic resin denture base material (PMMA). Materials and methods: One hundâ€red (100) prepared specimens were divided into five groups according to the tests, each group consisted of 20 specimens and t
Background: Poly (methyl methacrylate) has several disadvantages (poor mechanical properties) like impact and transverse strength. In order to overcome these disadvantages, several methods were used to strengthen the acrylic resin by using different fibers or fillers. This study was conducted to evaluate the effect of Plasma treatment of the fiber on mechanical properties Poly (methyl methacrylate) denture base material. Materials and methods: Specimens were prepared from poly methyl metha acrylic (PMMA) divided according to present of fiber into 4 groups (first group without fiber as control group, second group with Plasma treated polyester fibers, third group with Plasma treated polyamide fibers and fourth group Plasma treated combination
... Show More