Water quality sensors have recently received a lot of attention due to their impact on human health. Due to their distinct features, environmental sensors are based on carbon quantum dots (CQDs). In this study, CQDs were prepared using the electro-chemical method, where the structural and optical properties were studied. These quantum dots were used in the environmental sensor application after mixing them with three different materials: CQDs, Alq3 polymer and CQDs and Alq3 solutions using two different methods: drop casting and spin coating, and depositing them on silicon. The sensitivity of the water pollutants was studied for each case of the prepared samples after measuring the change in resistance of the samples at a temperature of 30 oC. Through the results, it was found that the highest sensitivity of sample 3 to the carbon continuous dot was in the case of the contaminant fructose and was 99.55%, while the highest sensitivity of sample 4 was for the one sensitive to the contaminant (mercury chloride) and was 81. As for sample 1, the highest sensitivity was in the case of detecting the contaminant lead chloride and was 80. The results showed that the best sensor was obtained using a spin-coating technique when the solution sample of CQDs+Alq3 was placed on a silicon slide in fructose and the sensitivity was 200%. This demonstrates the importance of quantum dots in measuring the sensitivity of water pollutants. The thin film thickness was measured to be 500 nm.
The quality of Global Navigation Satellite Systems (GNSS) networks are considerably influenced by the configuration of the observed baselines. Where, this study aims to find an optimal configuration for GNSS baselines in terms of the number and distribution of baselines to improve the quality criteria of the GNSS networks. First order design problem (FOD) was applied in this research to optimize GNSS network baselines configuration, and based on sequential adjustment method to solve its objective functions.
FOD for optimum precision (FOD-p) was the proposed model which based on the design criteria of A-optimality and E-optimality. These design criteria were selected as objective functions of precision, whic
... Show MoreToday with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned
Were arranged this study on two sections, which included first section comparison between markets proposed through the use of transport models and the use of the program QSB for less costs , dependant the optimal solution to chose the suggested market to locate new market that achieve lower costs in the transport of goods from factories (ALRasheed ,ALAmeen , AlMaamun ) to points of sale, but the second part has included comparison of all methods of transport (The least cost method ,Vogels method , Results Approximations method , Total method) depending on the agenda of transport, which includes the market proposed selected from the first section and choose the way in which check the solution first best suited in terms
... Show MoreMany oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different fr
... Show MoreThis paper examines the impact of flexural strengthening on the percentage of damaged strands in internally unbonded tendons in partially prestressed concrete beams (0, 14.28%, and 28.57%) and the recovering conditions using CFRP composite longitudinal laminates at the soffit, and end anchorage U-wrap sheets to restore the original flexural capacity and mitigate the delamination of the soffit of longitudinal Carbon Fiber Reinforced Polymer (CFRP) laminates. The composition of the laminates and anchors affected the stress of the CFRP, the failure mode, and thus the behavior of the beam. The experimental results revealed that the usage of CFRP laminates has a considerable impact on strand strain, particularly when anchors are employed
... Show MoreThis paper aims to study the rate of star formation (SFR) in luminous infrared galaxies at different wavelengths using distance measurement techniques (dl, dm) and to know which methods are the most accurate to determine the rate of star formation as we present through this research the results of the statistical analysis (descriptive statistics) for a sample of luminous infrared galaxies. The data used in this research were collected from the NASA Extragalactic Database (NED) and HYPERLEDA, then used to calculate the star formation rate and indicate the accuracy of the distance methods used (dl, dm). Two methods were tested on Hα, OII, FIR, radio continuum at 1.4 GHz, FUV, NUV, and total (FUV + FIR). The results showed that the dl
... Show MoreAutomated clinical decision support system (CDSS) acts as new paradigm in medical services today. CDSSs are utilized to increment specialists (doctors) in their perplexing decision-making. Along these lines, a reasonable decision support system is built up dependent on doctors' knowledge and data mining derivation framework so as to help with the interest the board in the medical care gracefully to control the Corona Virus Disease (COVID-19) virus pandemic and, generally, to determine the class of infection and to provide a suitable protocol treatment depending on the symptoms of patient. Firstly, it needs to determine the three early symptoms of COVID-19 pandemic criteria (fever, tiredness, dry cough and breat
... Show More