In this research, the use of natural materials like wool and cannabis as intermediate reinforcement for prosthetic limbs due to their comfort, affordability, and local availability was discussed. As part of this study on below-the-knee (BK) prosthetic sockets, two sets of samples were made using a vacuum method. These sets were made of natural fiber-reinforced polymer composites with lamination 80:20: group (Y) had 4 perlon, 1 wool 4 perlon, and group (G) had 4 perlon, 1 cannabis 4 perlon. The two groups were compared with a socket made of polypropylene. Tensile testing was used to determine the mechanical characteristics of the socket materials. The Y group has a yield stress of 17 MPs, an ultimate strength of 18.75 MPa, and an elastic modulus of 4.021 GPa, while for the G group, these values are 12.75 MPa, 18.84 MPa, and 4.076 GPa, respectively. The fatigue test was used to evaluate the failure characteristics of the socket. An F-socket was utilized to test the interface compression between both the limb and the socket. For the Tekscan sensor, the calculated pressure in the medial region is 350 K Pa, while it is 330 KPa in the posterior region. Solid Works software was used to draw a prosthetic socket for the numerical study. The failure safety agent for the composite material for group Y was 1.26. The finite element method (ANSYS Workbench 14.5) was used to look at the fatigue characteristics to detect the maximum stress, safety factor, and total deformation.
Background: Denture relining is the process of resurfacing of the tissue side of the ill fitting denture, the bond strength at the relining-denture base interface is most important for denture durability.The aim of present study was to evaluate the shear bond strength between the thermosens as relining material and different denture base materials that bonded by thermo fusing liquid. As this corrective procedureis the common chair side procedure in the dental clinic. Material and method: Sixty samples were prepared and divided into three main groups according to the type of denture base materials.Group (A) referred to the heat cure acrylic samples which consisted of 20 samples. Group (B) referred to the high impact acrylic samples which con
... Show MoreBackground: tooth debonding was one of the major reasons for denture repair. With the use of recently introduced thermoplastic denture base materials the problem of tooth debonding increased due to the nature of the bond between these materials and the acrylic teeth. This study was aimed to assess the bond of the acrylic teeth to conventional heat cure acrylic resin and to thermoplastic resin denture base material and methods to enhance it. Materials and methods: acrylic resin teeth were bonded to heat cure acrylic resin with and without wetting the ridge laps of the teeth with monomer and acrylic teeth with prefabricated retentive holes, unmodified and modified, in their ridge laps were processed with Valplast thermoplastic resin denture b
... Show MoreA cantilever beam is made from composite material which is consist of (matrix: polyester) and (particles: Silicon-Carbide) with different volume fraction of particles. A force is applied at the free end of beam with different values. The experimental maximum deflection of beam which occurs at the point of the applied load is recorded. The deflection and slope of beam are analyzed by using FEM modeling. MATLAB paltform is built to assemble the equations, vector and matrix of FEM and solving the unknown variables (deflection and slope) at each node. Also ANSYS platform is used to modeling beam in finite element and solve the problem. The numerical methods are used to compare the results with the theoretical and experimental data. A good ag
... Show MoreIn this paper, an analytical solution describing the deflection of a cracked beam repaired with piezoelectric patch is introduced. The solution is derived using perturbation method. A novel analytical model to calculate the proper dimensions of piezoelectric patches used to repair cracked beams is also introduced. This model shows that the thickness of the piezoelectric patch depends mainly on the thickness of the cracked beam, the electro-mechanical properties of the patch material, the applied load and the crack location. Furthermore, the model shows that the length of the piezoelectric patches depends on the thickness of the patch as well as it depends on the length of the cracked beam and the crack depth. The additional flexibil
... Show MoreIn this paper, an analytical solution describing the deflection of a cracked beam repaired with piezoelectric patch is introduced. The solution is derived using perturbation method. A novel analytical model to calculate the proper dimensions of piezoelectric patches used to repair cracked beams is also introduced. This model shows that the thickness of the piezoelectric patch depends mainly on the thickness of the cracked beam, the electro-mechanical properties of the patch material, the applied load and the crack location. Furthermore, the model shows that the length of the piezoelectric patches depends on the thickness of the patch as well as it depends on the length of the cracked beam and the crack depth. The additio
... Show MoreUsed cooking oil was undergoing trans-esterification reaction to produce biodiesel fuel. Method of production consisted of pretreatment steps, trans-esterification, separation, washing and drying. Trans-esterification of treated oils was studied at different operation conditions, the methanol to oil mole ratio were 6:1, 8:1, 10:1, and 12:1, at different temperature 30, 40, 50, and 60 º C, reaction time 40, 60, 80, and 120 minutes, amount of catalyst 0.5, 1, 1.5, and 2 wt.% based on oil and mixing speed 400 rpm. The maximum yield of biodiesel was 91.68 wt.% for treated oils obtained by trans-esterification reaction with 10:1 methanol to oil mole ratio, 60 º C reaction temperature, 80 minute reactio
... Show MoreBackground: The aim of this study was to evaluate the push-out bond strength of four different obturation materials to intraradicular dentin and to determine the failure mode. Materials and method: forty straight palatal roots of the maxillary first molars teeth were used in this study, the roots were instrumented using crown down technique and rotary EndoSequence system, the roots were randomly divided into four groups according to the materials used for obturation (n=10).Group (1): AH Plus sealer and gutta-percha. Group (2): Activ GP glass ionomer sealer and Activ GP gutta-percha (Activ GP system). Group (3): Bioceramic sealer and Bioceramic gutta-percha. Group (4): GuttaFlow2 sealer and gutta-percha. For all groups single cone obturatio
... Show MoreB3LYP/6-31G, DFT method was applied to hypothetical study the design of six carbon nanotube materials based on [8]circulene, through the use of cyclic polymerization of two and three molecules of [8]circulene. Optimized structures of [8]circulene have saddle-shaped. Design of six carbon nanotubes reactions were done by thermodynamically calculating (Δ S, Δ G and Δ H) and the stability of these hypothetical nanotubes depending on the value of HOMO energy level. Nanotubes obtained have the most efficient gap energy, making them potentially useful for solar cell applications.
Asphalt pavement properties in Iraq are highly affected by elevated summer air temperatures. One of these properties is stiffness (resilient modulus). To explain the effect of air temperatures on stiffness of asphalt concrete, it is necessary to determine the distribution of temperatures through the pavement asphalt concrete layers. In this study, the distribution of pavement temperatures at three depths (2cm,7cm, 10cm) below the pavement surface is determined by using the temperature data logger instrument. A relationship for determining pavement temperature as related to depth and air temperature has been suggested. To achieve the objective of this thesis, the prepared specimens have been tested for indirect tension in accordance with
... Show More