Silicon nanowire arrays (SiNWs) are created utilizing the metal-assisted chemical etching method with an Ag metal as a catalyst and different etching time of 15, 30, and 60 minutes using n-Si (100). Physical properties such as structural, surface morphology, and optical properties of the prepared SiNWs are studied. The diameter of prepared SiNWs ranged from 20 to 280 nm, and the reflectance in the visible part of the wavelength spectrum was less than 1% for all prepared samples. The obtained energy gap of prepared SiNWs was around 2 eV, which is higher than the energy gap of bulk silicon. X-ray diffraction (XRD) has diffraction peaks at 68.70o for all prepared samples. The heterojunction solar cell was fabricated based on the n-SiNWs/ P3HT/PEDOT: PSS structure. The heterojunction solar cell produced for 60 minutes has the highest Jsc of 11.55 mA.cm-2 and a conversion efficiency of 0.93%. Based on SiNWs prepared for etching time of 15 min, the solar cell demonstrated Jsc and Voc of 2.73 mA/cm2 and 0.46 V, respectively, and a conversion efficiency of 0.34%.
Microbial Desalination Cell (MDC) is capable of desalinating seawater, producing electrical power and treating wastewater. Previously, chemical cathodes were used, which were application restrictions due to operational expenses are quite high, low levels of long-term viability and high toxicity. A pure oxygen cathode was using, external resistance 50 and 150 k Ω were studied with two concentrations of NaCl in the desalination chamber 15-25 g/L which represents the concentration of brackish water and sea water. The highest energy productivity was obtained, which amounted to 44 and 46 mW/m3, and the maximum limit for desalination of saline water was (31% and 26%) for each of 25 g / L and 15 g / L, respectively, when using an ex
... Show MoreSearch Results at the International Journal of Science and Research (IJSR)
The fall angle of sun rays on the surface of a photovoltaic PV panel and its temperature is negatively affecting the panel electrical energy produced and efficiency. The fall angle problem was commonly solved by using a dual-axis solar tracker that continually maintains the panel orthogonally positioning to the sun rays all day long. This leads to maximum absorption for solar radiation necessary to produce maximum amount of energy and maintain high level of electrical efficiency. To solve the PV panel temperature problem, a Water-Flow Double Glazing WFDG technique has been introduced as a new cooling tool to reduce the panel temperature. In this paper, an integration design of the water glazing system with a dual-axis tracker has been ac
... Show MoreThe aim of this study was to investigate antibiotic amoxicillin removal from synthetic pharmaceutical wastewater. Titanium dioxide (TiO2) was used in photocatalysis treatment method under natural solar irradiation in a tubular reactor. The photocatalytic removal efficiency was evaluated by the reduction in amoxicillin concentration. The effects of antibiotics concentration, TiO2 dose, irradiation time and the effect of pH were studied. The optimum conditions were found to be irradiation time 5 hr, catalyst dosage 0.6 g/L, flow rate 1 L/min and pH 5. The photocatalytic treatment was able to destruct the amoxicillin in 5 hr and induced an amoxicillin reduction of about 10% with 141.8 kJ/L accumulate
... Show MoreOne of the most important problems facing the world today is the energy problem. The solution was in finding renewable energy sources such as solar energy. The solar energy applications in Iraq is facing many problems . One of the most important problems is the accumulation of dust on the solar panels surface which causes decreasing its performance sharply. In the present work, a new technique was presented by using two-axis solar tracking system to reduce the accumulated dust on the solar panel surface and compared it with the fixed solar panels which installed at tilt angles 30° and 45°. The results indicated that the maximum losses of the output power due to accumulation of dust on the fixed solar panels is about 31.4% and 23.1% res
... Show MoreIn this work, the effect of the addition of bright nickel plating and silver carried out by the electroplating method has been studied, on the coating of copper nanoparticles on the copper base metal via the process of thermal evaporation. The improvement of the solar absorber using CuNP in combination with the bright nickel and silver was obtained to be better than copper nanoparticles individually. A bright nickel enhanced the absorbed thermal stability. Also, other optical properties, absorptions, and emissivity slightly decreased from (93% to 87%), while the existence of silver had a slight impact on absorption of about (86.50%). On the other hand, thermal conductivity was evaluated using hot disk analyzer. The results showed a good
... Show MoreThe performance of a solar assisted desiccant cooling system for a meeting-hall located in the College of Engineering/University of Baghdad was evaluated theoretically. The system was composed of four components; a solar air heater, a desiccant dehumidifier, a heat exchanger and an evaporative cooler. A computer simulation was developed by using MATLAB to assess the effect of various design and operating conditions on the performance of the system and its components. The actual weather data on recommended days were used to assess the load variation and the system performance during those days. The radiant time series method (RTS) was used to evaluate the hourly variation of the cooling load. Four operation modes were employed for perform
... Show MoreThis work was conducted to study the coefficient of performance for solar absorption refrigeration by using direct solar energy using aqueous ammonia 0.45 mass fraction (ammonia – water).The experiments were carried out in solar absorption system .The system consisted of solar collector generator (0.25 m × 0.25 m × 0.04m) and condenser cooled by a water bath followed by liquid receiver and evaporator. The results showed that the maximum generator temperature was (92° - 97°) during June 2009, and the minimum evaporator temperature was (5°C - 10°C) for aqua ammonia system.. It was, also, found that the coefficient of performance, cooling ratio and amount of cooling obtainable increased with increasing maximum generator temperature
... Show More