The electronic characteristics, including the density of state and bond length, in addition to the spectroscopic properties such as IR spectrum and Raman scattering, as a function of the frequency of Sn10O16, C24O6, and hybrid junction (Sn10O16/C24O6) were studied. The methodology uses DFT for all electron levels with the hybrid function B3-LYP (Becke level, 3-parameters, Lee–Yang-Parr), with 6-311G (p,d) basis set, and Stuttgart/Dresden (SDD) basis set, using Gaussian 09 theoretical calculations. The geometrical structures were calculated by Gaussian view 05 as a supplementary program. The band gap was calculated and compared to the measured values. The density of state of the hybrid junction (Sn10O16/C24O6) increased because of the increased number of degeneracy states. Theoretical values of bonds for C=C, C=O, and Sn-O are equal to 1.33, 1.20 and 2.27 Å respectively, these bonds values are in good agreement with experimental values of bond length of 1.34 for the C=C bond, 1.23 for the C=O bond, and 2.3 for the Sn-O bond. . The spectroscopic properties, such as IR spectra have shown a peak which is comparable to longitudinal modes of GO and tin dioxide SnO2 at (1582 and 690) cm-1, respectively.
Abstract:
Objective: The study aim is to assess knowledge of secondary schools female students regarding dysmenorrhea; find out the effectiveness of education program on secondary schools students and also to identify relationship between education program and certain variables.
Methodology: The quasi-experimental design (pretest and posttest) on one hundred students 4th year in Khawla Bint Al-Azwar secondary school for females at morning shift in Al Nasiriya City, data collection started at 4th March to 18th March 2018. A non-probability (purposive) sample of (100) students (50) student from scientific branch and (50) students from literary branch. Data have been collected through using a questionnaire modeled and made up of
Biotreatment using immobilized cells (IC) technology has proved to be the most promising and most economical approach for the removal of many toxic organic pollutants found in petroleum-refinery wastewater (PRW) such as phenol. This study was undertaken to evaluate the degradation of phenol by Pseudomonas cells individually immobilized in two different bio-carrier matrices including polyvinyl alcohol-guar gum (PVA-GG) and polyvinyl alcohol-agar agar (PVA-AA). Results of batch experiments revealed that complete removal of phenol was attained in the first cycle after 150 min using immobilized cells (IC) in both PVA-GG and PVA-AA. Additional cycles were confirmed to evaluate the validity of recycling beads of immob
... Show MoreAn anatomical study was carried out at the College of Agricultural Engineering Sciences, University of Baghdad, in 2017, on lupine crop (Lupinus albus) as a comparison guide of three seed weights of three lupine cultivars viz. ‘Giza-1’, ‘Giza-2’ and ‘Hamburg’. The nested design was used with four replications. The results showed that cultivars had a significant effect on stem anatomical traits. ‘Hamburg’ cultivar recorded the highest stem diameter, cortex thickness and xylem vascular diameter, while cultivar ‘Giza-1’ recorded the lowest values for the same traits as well as the highest collenchyma layer thickness, vascular bundle thickness, and xylem thickness. Cultivar ‘Giza-2’ recorded the lowest vascular b
... Show MoreIn this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
Epithelial‐mesenchymal transition (
This study investigates the implementation of Taguchi design in the estimation of minimum corrosion rate of mild-steel in cooling tower that uses saline solution of different concentration. The experiments were set on the basis of Taguchi’s L16 orthogonal array. The runs were carried out under different condition such as inlet concentration of saline solution, temperature, and flowrate. The Signal-to- Noise ratio and ANOVA analysis were used to define the impact of cooling tower working conditions on the corrosion rate. A regression had been modelled and optimized to identify the optimum level for the working parameters that had been founded to be 13%NaCl, 35ᴼC, and 1 l/min. Also a confirmation run to establish the p
... Show More