Polymer electrolytes were prepared using the solution cast technology. Under some conditions, the electrolyte content of polymers was analyzed in constant percent of PVA/PVP (50:50), ethylene carbonate (EC), and propylene carbonate (PC) (1:1) with different proportions of potassium iodide (KI) (10, 20, 30, 40, 50 wt%) and iodine (I2) = 10 wt% of salt. Fourier Transmission Infrared (FTIR) studies confirmed the complex formation of polymer blends. Electrical conductivity was calculated with an impedance analyzer in the frequency range 50 Hz–1MHz and in the temperature range 293–343 K. The highest electrical conductivity value of 5.3 × 10-3 (S/cm) was observed for electrolytes with 50 wt% KI concentration at room temperature. The magnitude of electrical conductivity was increased with the increase in the salt concentration and temperature. The blend electrolytes have a high dielectric constant at lower frequencies which may be attributed to the dipoles providing sufficient time to get aligned with the electric field, resulting in higher polarization. The reduction of activation energy (Ea) suggests that faster-conducting electrolyte ions want less energy to move.
The current research aims to build a training program for chemistry teachers based on the knowledge economy and its impact on the productive thinking of their students. To achieve the objectives of the research, the following hypothesis was formulated:
There is no statistically significant difference at (0.05) level of significance between the average grades of the students participating in the training program according to the knowledge economy and the average grades of the students who did not participate in the training program in the test of productive thinking. The study sample consisted of (288) second intermediate grade students divided into (152) for the control group
... Show MoreTwo new nonsymmetrical mesogenic homologous series of terminal substituent ether (series [Vn]) and carboxy (series [VIn]) incorporating azobenzene and 1,3,4-oxadiazole group were synthesized. Both series have been All compounds thus isolated were purified and characterized by elemental analysis, Fourier Transform Infrared Spectroscopy, 1H NMR, along with thermal analysis and texture observation using Differential Scanning Calorimetry (DSC) and Polarizing Optical Microscopy (POM), respectively. All compounds of the first series exhibited liquid crystalline properties. The homologues [V1]-[V3] display a nematic mesophase, the compounds [V4]-[V7] exhibit a dimorphism behavior, nematic (N) and smectic A (SmA) mesophases, the compounds [V8] and
... Show MoreNumerical simulations have been carried out on the solar chimney power plant systems. This paper gives the flow field analysis for a solar chimney power generation project located in Baghdad. The continuity, Naver-stockes, energy and radiation transfer equations have been solved and carried out by Fluent software. The governing equations are solved for incompressible, 3-D, steady state, turbulent is approximated by a standard k - model with Boussiuesq approximation to study and evaluate the performance of solar chimney power plant in Baghdad city of Iraq. The different geometric parameters of project are assumed such as collector diameter and chimney height at different working conditions of solar radiation intensity (300,450,600,750
... Show MoreThis research involves study effect of chloride ions in concentration range (0.01 – 0.50 mol.dm-3) on the corrosion behavior of Al-Zn alloy in basic media of 1x10-3 mol.dm-3 NaOH at pH=11 and four different temperatures in the range (298-313 K). Cathodic and anodic Tafel slopes (bc &ba) and transfer coefficients (αc & αa) were calculated and the results interprets according to the variation of the rate – determining steps. The results also indicate that the chloride ions are bonded chemically in the interface as an initial step of formation of different mixed oxohydroxy – and chloro complexes. Polarization resistance (Rp) is calculates
... Show MoreThis paper describes flexural behavior of two spans continuous rectangular concrete beams reinforced with mild steel and partially prestressing strands, to evaluate using different prestressing level and prestressing area in continuous prestressed beams at serviceability and ultimate stages. Six continuous concrete beams with 4550 mm length reinforced with mild steel reinforcement and partially prestressed with two prestressing levels of (0.7fpy or 0.55fpy.) of and different amount of 12.7 mm diameter seven wire steel strand were used. Test results showed that the partially prestressed reinforced beams with higher prestressing level exhibited the narrowest crack width, smallest deflection and strain in both steel and concrete at ul
... Show MoreImproving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks.
This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC) and reactive powder concrete (RPC). The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressiv
... Show MoreSix proposed simply supported high strength-steel fiber reinforced concrete (HS-SFRC) beams reinforced with FRP (fiber reinforced polymer) rebars were numerically tested by finite element method using ABAQUS software to investigate their behavior under the flexural failure. The beams were divided into two groups depending on their cross sectional shape. Group A consisted of four trapezoidal beams with dimensions of (height 200 mm, top width 250 mm, and bottom width 125 mm), while group B consisted of two rectangular beams with dimensions of (125 ×200) mm. All specimens have same total length of 1500 mm, and they were also considered to be made of same high strength concrete designed material with 1% volume fraction of steel fiber.
... Show More