In this work, two cone-inverted cylindrical and cross-hybrid dielectric resonator antennas are stacked and excited by the coaxial probe method with an operating standard resonant frequency of 5.438 GHz. A drawback of these standard Dielectric Resonator Antennas (DRAs) is their narrow bandwidth. For good antenna performance, a stacked DR geometry and a thick dielectric substrate having a low dielectric constant are desired since this provides large bandwidth, better radiation power, reduces conductor loss and nonappearance of surface waves. Many approaches, such as changing the shape of the dielectric resonator, have been used to enhance bandwidth. Using DRA, having the lowest dielectric constant, increases the bandwidth and the electromagnetic energy. In the current work, bandwidth improvement was significantly achieved by the proposed geometry by varying the antenna size. A novel hybrid DRA configuration is used to increase the bandwidth of the antenna to 89.27% and 149.23% due to cone-inverted cylindrical and cross-hybrid dielectric resonator antennas, respectively. The DRA is designed numerically via Finite Difference Time Domain (FDTD) method. Several parameters like return loss, input impedance (verified at ) and radiation pattern are calculated. Furthermore, the stacked-hybrid technique is used to enhance the antenna's performance which is useful for broadband communication and the demand of wireless.
Electromyography (EMG) is being explored for evaluating muscle activity. For gait analysis, EMG needs to be small, lightweight, portable device, and with low power consumption. The proposed superficial EMG (sEMG) system is aimed to be used in rehabilitation centers and biomechanics laboratories for gait analysis in Iraq.
The system is built using MyoWare, which is controlled by using STM32F100 microcontroller. The sEMG signal is transferred via Bluetooth to the computer (about 30m range) for further processing. MATLAB is used for sEMG signal conditioning. The overall system cost (without computer) is about $80. The proposed system is validated using wired NORAXON EMG using the mean root mean squared metho
... Show MoreThe research involved a rapid, automated and highly accurate developed CFIA/MZ technique for estimation of phenylephrine hydrochloride (PHE) in pure, dosage forms and biological sample. This method is based on oxidative coupling reaction of 2,4-dinitrophenylhydrazine (DNPH) with PHE in existence of sodium periodate as oxidizing agent in alkaline medium to form a red colored product at ʎmax )520 nm (. A flow rate of 4.3 mL.min-1 using distilled water as a carrier, the method of FIA proved to be as a sensitive and economic analytical tool for estimation of PHE.
Within the concentration range of 5-300 μg.mL-1, a calibration curve was rectilinear, where the detection limit was 3.252 μg.mL
Semi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.
We compare two methods Bayesian and . Then the results were compared using MSe criteria.
A simulation had been used to study the empirical behavior for the Logistic model , with different sample sizes and variances. The results using represent that the Bayesian method is better than the at small samples sizes.
... Show MoreFe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies
... Show MoreFiber-to-the-Home (FTTH) has long been recognized as a technology that provides future proof bandwidth [1], but has generally been too expensive to implement on a wide scale. However, reductions in the cost of electro-optic components and improvements in the handling of fiber optics now make FTTH a cost effective solution in many situations. The transition to FTTH in the access network is also a benefit for both consumers and service providers because it opens up the near limitless capacity of the core long-haul network to the local user. In this paper individual passive optical components, transceivers, and fibers has been put together to form a complete FTTH network. Then the implementation of the under construction Baghdad/Al
... Show More
In today's world, most business, regardless of size, believe that access to Internet is imperative if they are going to complete effectively. Yet connecting a private computer (or a network) to the Internet can expose critical or confidential data to malicious attack from anywhere in the world since unprotected connections to the Internet (or any network topology) leaves the user computer vulnerable to hacker attacks and other Internet threats. Therefore, to provide high degree of protection to the network and network's user, Firewall need to be used.
Firewall provides a barrier between the user computer and the Internet (i.e. it prevents unauthor
... Show MorePV connected systems are worldwide installed because it allows consumer to reduce energy consumption from the electricity grid. This paper presents the results obtained from monitoring a 1.1 kWp. The system was monitored for nine months and all the electricity generated was fed to the fifth floor for physics and renewable energy building 220 V, 50 Hz. Monthly, and daily performance parameters of the PV system are evaluated which include: average generated of system Ah per day, average system efficiency, solar irradiation around these months. The average generated kWh per day was 8 kWh/day, the average solar irradiation per day was 5.6 kWh/m2/day, the average inverter efficiency was 95%, the average modules efficien
... Show More