In this work, electron number density calculated using Matlab program code with the writing algorithm of the program. Electron density was calculated using Anisimov model in a vacuum environment. The effect of spatial coordinates on the electron density was investigated in this study. It was found that the Z axis distance direction affects the electron number density (ne). There are many processes such as excitation; ionization and recombination within the plasma that possible affect the density of electrons. The results show that as Z axis distance increases electron number density decreases because of the recombination of electrons and ions at large distances from the target and the loss of thermal energy of the electrons in high distance with the progress of time and at a certain coordinate. The target is carbon (Graphite). The results were selected in four dimensions where three of them belong to spatial coordinates x, y, z and the fourth dimension is the electron density (ne).
A theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namly (1-Amino-4,7-dimethyl-6-nitro-1H-quinolin-2-one (ADNQ2O)). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G (2d, 2p) level was used to calculate the optimized geometry, physical properties and chemical inhibition parameters, with the local reactivity to predict both the reactive centers and to locate the possible sites of nucleophilic and electrophilic attacks, in vacuum, and in two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in the saline solution (of 3.5%) NaCl were st
... Show MoreAbstract We have been studied and analysis the electronic current at the interfaces of Au/PTCDA system according to simple quantum mode for the electronics transition rate due to postulate quantum theory. Calculation of electronic current were performed at interface of Au/PTCDA as well as for investigation the feature of electronic density at this devices. The transition of electronic current study under assume the electronic state of Au and PTCDA were continuum and the states of electrons must be closed to energy level for Au at Fermi state, and the potential at interface feature depended on structure of Au and PTCDA material. The electronic transition current feature was dependent on the driving force energy that results of absorption ene
... Show MoreThe presentwork is a theoretical study in the field of charged particle optics. It concentrates on the design of electrostatic enzil lens for focusing charge particles beams, using inverse method in designingthe electrostatic lens. The paraxial ray equation was solved to obtain the trajectory of the particles, the optical properties such as the focal length and spherical and chromatic aberration coefficients were determined. The shape of the electrode of the electrostatic lens were determined by solving poison equation and the results showed low values of spherical and chromatic aberrations, which are considered as good criteria for good design.
The charge transfer at C23H17F8N8O2PRu, C44H30BF4N5O4Ru, C56H52CL5N5OOsP2 and C76H88F80N24O11P10Ru4 nitrosyl complexes are investigation and studies theoretically using the quantum consideration. Charge transfer behavior largely rely to the electric properties of nitrosyl complexes system whose depending on the main important parameters for the transmission rate constant such that: orientation transition energy, overlapping coupling coefficient, driving force energy, height barrier and Temperature T (K). Data results have been evaluated using a MATLAB program. Results show that rate of charge transfer increases due to increases the orientation transition energy.
Abstract
This paper represents a study of the effect of the soil type, the drilling parameters and the drilling tool properties on the dynamic vibrational behavior of the drilling rig and its assessment in the drilling system. So first, an experimental drilling rig was designed and constructed to embrace the numerical work.
The experimental work included implementation of the drill-string in different types of soil with different properties according to the difference in the grains size, at different rotational speeds (RPM), and different weights on bit (WOB) (Thrust force), in a way that allows establishing the charts that correlate the vibration acceleration, the rate of penetration (ROP), and the power
... Show MoreA cantilever beam is made from composite material which is consist of (matrix: polyester) and (particles: Silicon-Carbide) with different volume fraction of particles. A force is applied at the free end of beam with different values. The experimental maximum deflection of beam which occurs at the point of the applied load is recorded. The deflection and slope of beam are analyzed by using FEM modeling. MATLAB paltform is built to assemble the equations, vector and matrix of FEM and solving the unknown variables (deflection and slope) at each node. Also ANSYS platform is used to modeling beam in finite element and solve the problem. The numerical methods are used to compare the results with the theoretical and experimental data. A good ag
... Show MoreThe liver protective effects of pentoxifylline were studied through pre-treatment of rats with various intraperitoneal (IP) doses (25, 50 and 100mg/kg/day) 14 days before induction of liver toxicity by carbon tetrachloride (CCl4). The parameters of oxidative stress, malondialdehyde (MDA) and reduced glutathione (GSH) were measured in liver homogenate in addition to histopathological examinations. Analysis of data revealed significant amelioration of oxidative stress in groups of animals pre-treated with different doses of pentoxifylline (PTX) compared to group of animals intoxicated by CCl4 as evidenced by lowering MDA contents and elevation of GSH levels in liver tissue homogenate but the levels still signifi
... Show MoreObjective: This study aimed to evaluate the effect of coating titanium (Ti) dental implant with polyether ketone ketone (PEKK) polymer using magnetron sputtering on osseointegration, trying to overcome some of the problems associated with Ti alloys. Material and Methods: Implants were prepared from grade (II) commercially pure titanium (CP Ti), then laser was used to induce roughness on the surface of Ti. PEKK was deposited on the surface of Ti implants by radiofrequency (RF) magnetron sputtering technique. The implants were divided in to three groups: without coating (Ls), with PEKK coating using argon (Ar) as sputtering gas (Ls-PEKK-Ar), and with PEKK coating using nitrogen (N) as sputtering gas (Ls-PEKK-N). All the implants were implante
... Show More