A metal-assisted chemical etching process employing p-type silicon wafers with varied etching durations is used to produce silicon nanowires. Silver nanoparticles prepared by chemical deposition are utilized as a catalyst in the formation of silicon nanowires. Images from field emission scanning electron microscopy confirmed that the diameter of SiNWs grows when the etching duration is increased. The photoelectrochemical cell's characteristics were investigated using p-type silicon nanowires as working electrodes. Linear sweep voltammetry (J-V) measurements on p-SiNWs confirmed that photocurrent density rose from 0.20 mA cm-2 to 0.92 mA cm-2 as the etching duration of prepared SiNWs increased from 15 to 30 min. The conversion efficiency (ƞ) was 0.47 for p-SiNWs prepared with a 15-minute etching time and 0.75 for p-SiNWs prepared with a 30-minute etching time. The cyclic voltammetry (CV) experiments performed at various scan rates validated the faradic behavior of p-SiNWS prepared for 15 and 30 min of etching. Because of the slow ion diffusion and the increased scanning rate, the capacitance decreased with increasing scanning rate. Mott-Schottky (M-S) investigation showed a significant carriers concentration of 3.66×1020 cm-3. According to the results of electrochemical impedance spectroscopy (EIS), the SiNWs photocathode prepared by etching for 30 min had a charge transfer resistance of 25.27 Ω, which is low enough to enhance interfacial charge transfer.
In the 1980s, the French Administration Roads LCPC developed high modulus mixtures (EME) by using hard binder. This type of mixture presented good resistance to moisture damage and improved mechanical properties for asphalt mixtures including high modulus, good fatigue behaviour and excellent resistance to rutting. In Iraq, this type of mixture has not been used yet. The main objective of this research is to evaluate the performance of high modulus mixtures and comparing them with the conventional mixture, to achieve this objective, asphalt concrete mixes were prepared and then tested to evaluate their engineering properties which include moisture damage, resilient modulus, permanent deformation and fatigue characteristics. These pro
... Show MoreThis work evaluates the economic feasibility of various production scenarios for the Zubair reservoir in the Kifl oil field using cash flow and net present value (NPV) calculations. The Kifl field is an exploratory field that has not yet been developed or assessed economically. The first well was drilled in 1960, and three other wells were later drilled to assess the oil accumulation, so in this research, Different production scenarios were evaluated economically. These scenarios were proposed based on the reservoir model of the Zubair formation in the field. The research methodology used QUE$TOR software to estimate capital expenditures (CapEx) and operating expenditures (OpEx) based on field-level data, production prof
... Show MoreThe purpose of present work is to study the relationship of the deformed shape of the nucleus with the radioactivity of nuclei for (Uranium-238 and Thorium-232) series. To achieve our purposes we have been calculated the quadruple deformation parameter (β2) and the eccentricity (e) and compare the radioactive series with the change of the and (e) as indicator for the changing in the nucleus shape with the radioactivity. To obtain the value of quadruple deformation parameter (β2), the adopted value of quadruple transition probability B (E2; 0+ → 2+) was calculated from Global Best fit equation. While the eccentricity (e) was calculated from the values of the minor and major ellipsoid axis’s (a & b). From the results, it is obvi
... Show More
This paper discusses using H2 and H∞ robust control approaches for designing control systems. These approaches are applied to elementary control system designs, and their respective implementation and pros and cons are introduced. The H∞ control synthesis mainly enforces closed-loop stability, covering some physical constraints and limitations. While noise rejection and disturbance attenuation are more naturally expressed in performance optimization, which can represent the H2 control synthesis problem. The paper also applies these two methodologies to multi-plant systems to study the stability and performance of the designed controllers. Simulation results show that the H2 controller tracks a desirable cl
... Show MoreTransforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr
... Show MoreThe region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled
... Show MoreIn this research a study of the effect of quality, sequential and directional layers for three types of fibers are:(Kevlar fibers-49 woven roving and E- glass fiber woven roving and random) on the fatigue property using epoxy as matrix. The test specimens were prepared by hand lay-up method the epoxy resin used as a matrix type (Quick mast 105) in prepared material composit . Sinusoidal wave which is formed of variable stress amplitudes at 15 Hz cycles was employed in the fatigue test ( 10 mm )and (15mm) value 0f deflection arrival to numbers of cycle failure limit, by rotary bending method by ( S-N) curves this curves has been determined ( life , limit and fa
... Show MoreThe present study focuses on the deformation of neutron-rich nuclei near the neutron drip line. The nuclei of interest include 28O, 42Si, 58Ca, 80Ni, 100Kr, 122Ru, 152Ba, 166Sm, and 176Er. The relativistic Hartree - Bogoliubov (RHB) approach with effective density-dependent point coupling is utilized to investigate the triaxial deformation, and Skyrme - Hartree - Fock + Bardeen - Cooper - Schrieffer is used to analyze the axial deformation. The study aimed to understand the interplay between nuclear forces, particle interactions, and shell structure to gain insights into the unique behavior of neutron-rich nuclei. Despite these nuclei containing magic numbers, their shapes are still affected by the nucleons' collective behavior and
... Show MoreThe influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are carried out on fusiform-type aneurysm models, and a comparison of results with those from a one-dimensional fluid–structure interaction model shows close agreement. Further mathematical analysis of these results allows the definition of several indicators that characterize the impact of an aneurysm on waveforms. These indicators are then further studied in a computational model of a systemic blood flow network. This demonstr
... Show More