Preferred Language
Articles
/
ijp-1070
Preparation of Silicon Nanowires Photocathode for Photoelectrochemical Water Splitting
...Show More Authors

A metal-assisted chemical etching process employing p-type silicon wafers with varied etching durations is used to produce silicon nanowires. Silver nanoparticles prepared by chemical deposition are utilized as a catalyst in the formation of silicon nanowires. Images from field emission scanning electron microscopy confirmed that the diameter of SiNWs grows when the etching duration is increased. The photoelectrochemical cell's characteristics were investigated using p-type silicon nanowires as working electrodes. Linear sweep voltammetry (J-V) measurements on p-SiNWs confirmed that photocurrent density rose from 0.20 mA cm-2 to 0.92 mA cm-2 as the etching duration of prepared SiNWs increased from 15 to 30 min. The conversion efficiency (ƞ) was 0.47 for p-SiNWs prepared with a 15-minute etching time and 0.75 for p-SiNWs prepared with a 30-minute etching time. The cyclic voltammetry (CV) experiments performed at various scan rates validated the faradic behavior of p-SiNWS prepared for 15 and 30 min of etching. Because of the slow ion diffusion and the increased scanning rate, the capacitance decreased with increasing scanning rate. Mott-Schottky (M-S) investigation showed a significant carriers concentration of 3.66×1020 cm-3. According to the results of electrochemical impedance spectroscopy (EIS), the SiNWs photocathode prepared by etching for 30 min had a charge transfer resistance of 25.27 Ω, which is low enough to enhance interfacial charge transfer.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 22 2022
Journal Name
Watre
Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics
...Show More Authors

A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu

... Show More
Crossref (10)
Crossref
Publication Date
Thu Dec 13 2018
Journal Name
International Journal Of Engineering & Technology
Microwave Pyrolysis of Water hyacinth for Biochar Production Using Taguchi Method
...Show More Authors

The manuscript should contain an abstract. The abstract should be self-contained and citation-free and should not exceed 200 words. The abstract should state the purpose, approach, results and conclusions of the work.  The author should assume that the reader has some knowledge of the subject but has not read the paper. Thus, the abstract should be intelligible and complete in it-self (no numerical references); it should not cite figures, tables, or sections of the paper. The abstract should be written using third person instead of first perso The fast microwave assisted pyrolysis (FMWAP) of water hyacinth (WH) for biochar production is investigated. Taguchi’s method was used to optimize FMWAP parameters. The effects of microwave

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The Effect of Magnetic Water for Chemical Fertilizer in Tomato Plant
...Show More Authors

The research aims to find ways to minimize the use of quantities of chemical fertilizers in agriculture in order to get to an environment that is free of contaminants. Magnetized water technology used in the experience of planting seeds of tomatoes Thomson type to obtain a higher efficiency to absorb fertilizer NRK in the protected environment of the period from February to June. Magnetized water system used locally made levels Gaues (4800,2500,1500) concentrations of 50 to 100% for each level and the rate of (4) replicates, and results indicated that the severity of the magnet (4800 Gaues) and a concentration of 50% gave the highest percentage of tomato fruit size and intensity ( 1500 Gaues) and a concentration of 100% did not give any inc

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Designing system cost for water pollution plants in mayoralty of Baghdad
...Show More Authors

          There is an increase in the need for cost accounting in all organizations and from different sectors to provide detailed information to the totals of financial accounting, first and help solve problems associated with inventory and analysis, tabulation and allocation of cost elements II and do the planning process and provide the necessary oversight and help to take the right decisions such as pricing decisions that need to Information cost accounting.
And suffer most of the non-governmental organizations from the lack of a cost accounting system provides information on the cost of service in these organizations and the department research sample circle v

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 03 2017
Journal Name
Sci. Int.(lahore)
IMPROVING NO2 SENSITIVITY OF POROUS SILICON BY FUNCTIONALIZATION ITS SURFACE WITH COPPER AS CATALYST
...Show More Authors

In this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p

... Show More
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Catalyzed and Promoted Direct Reaction of Ethyl Chloride with Silicon Using Stirred-Bed Reactor
...Show More Authors

In this paper a stirred-bed performed of the copper catalyzed synthesis of ethylchlorosilanes from silicon and ethyl chloride was described. A Si-catalyst mixture prepared by reaction of CuCl and Si was employed. The compositions of products were mainly ethyltrichlorosilane, diethyldichlorosilane, and ethyldichlorosilane and mainly depended on the extent of Cu in the mixture and the reaction temperature. A promoting effect on the extent of adsorption was observed on the addition of certain additives. The kinetic data revealed the direct depended of the reaction rate on C2H5Cl pressure.

View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2012
Journal Name
Turkish Journal Of Physics
The influence of confinements on the photon flux spectra in amorphous silicon quantum dots
...Show More Authors

View Publication
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Journal Of Physics Conference Series
Enhanced phot-respons of porous silicon photo- detectors by embedding Titanium -dioxide nano-particles
...Show More Authors

: Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA /cm2), in15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in e

... Show More
Publication Date
Mon Mar 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Microstructure and Some Properties of Aluminum-Silicon Matrix Composites Reinforced by Alumina or Chromia
...Show More Authors

In this work, yttrium oxide particles (powder) reinforced AL-Si matrix composites (Y2O3/Al-Si) and Chromium oxide particles reinforced AL-Si matrix composites (Cr2O3/AL-Si) were prepared by direct squeeze casting. The volume percentages of yttrium oxide used are (4, 8.1, 12.1, 16.1 vol %) and the volume percentages of the chromium oxide particles used are (3.1, 6.3, 9.4, 12.5 vol. %). The parameters affecting the preparation of Y2O3/Al-Si and Cr2O3/AL-Si composites by direct squeeze casting process were studied. The molten Al-Si alloy with yttrium oxide particles or with chromium oxide particles was stirred again using an electrical stirrer at speed 500 rpm  and the molten alloy was  poured  into the squeeze die cavity. Th

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Evaluating Electrocoagulation Process for Water Treatment Efficiency Using Response Surface Methodology
...Show More Authors

The electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples

... Show More
View Publication Preview PDF
Crossref (3)
Crossref