Recently, research has focused on non-thermal plasma (NTP) technologies as a way to remove volatile organic compounds from the air stream, due to its distinctive qualities, which include a quick reaction at room temperature. In this work, the properties of the plasma generated by the dielectric barrier discharge (DBD) system and by a glass insulator were studied. Plasma was generated at different voltages (3, 4, 6, 7, 8 kV ) with a fixed distance between the electrodes of 5 mm, and a constant argon gas flow rate of (2.5) I/min. DBD plasma emission spectra were recorded for each voltage. The Boltzmann plot method was used to calculate the electron temperature in the plasma ( ), and the Stark expansion method was used to calculate the electron density ( ). The decomposition of organic compounds (cyclohexane) was also studied using DBD plasma. The results showed that the potential difference between the two electrodes has a clear effect on the plasma parameters, as the temperature of the electrons and the density of electrons increase with the increase in the potential difference between the two electrodes. The DBD plasma system proved to be a good way to decompose volatile organic compounds, as the results proved the emission of hydrogen gas as one of the dissociation products of cyclohexane.
In this research, the results of x-ray diffraction method were used to determine the uniform stress deformation and microstructure parameters of CuO nanoparticles to determine the lattice strain obtained and crystallite size and then to compare the results obtained by two model Halder Wagner and Size Strain Plot with the results of these methods of the same powder using equations during which the calculation of the size of the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (19.81nm) and the lattice strain (0.004065) of the Halder-wagner model respectively and for the ssp method were the results of the crystallite size (17.20nm) and lattice strain (0.000305) respectively. The sa
... Show MoreTranslation is a dynamic and living process that cannot be considered equal to the original text and requires the appropriate structure, language, thought and culture of the target language, and the translator's intellectual, linguistic and cultural influences inadvertently penetrate into the translated text. It causes heterogeneity of the destination text with the source text.
Admiral's theory is trying to help by providing components and suggested approaches to resolve these inconsistencies. In the meantime, in addition to the mission of putting words together, the translator must sometimes sit in the position of the reader and judge and evaluate the translated text in order to understand its shortcomings and try to correct it a
... Show MoreFour Co(II), (C1); Ni(II), (C2); Cu(II), (C3) and Zn(II), (C4) chelates have been synthesized with 1-(4-((2-amino- 5‑methoxy)diazenyl)phenyl)ethanone ligand (L). The produced compounds have been identified by using spectral studies, elemental analysis (C.H.N.O), conductivity and magnetic properties. The produced metal chelates were studied using molar ratio as well as sequences contrast types. Rate of concentration (1 ×10 4 - 3 ×10 4 Mol/L) sequence Beer’s law. Compound solutions have been noticed height molar absorptivity. The free of ligand and metal chelates had been applied as disperse dyes on cotton fabrics. Furthermore, the antibacterial activity of the produced compounds against various bacteria had been investigated. F
... Show MoreCharacterization of the heterogonous reservoir is complex representation and evaluation of petrophysical properties and application of the relationships between porosity-permeability within the framework of hydraulic flow units is used to estimate permeability in un-cored wells. Techniques of flow unit or hydraulic flow unit (HFU) divided the reservoir into zones laterally and vertically which can be managed and control fluid flow within flow unit and considerably is entirely different with other flow units through reservoir. Each flow unit can be distinguished by applying the relationships of flow zone indicator (FZI) method. Supporting the relationship between porosity and permeability by using flow zone indictor is ca
... Show MoreCompound 4-(((6-amino-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-3-yl)methoxy)methyl)- 2,6-dimethoxyphenol (6) was synthesized by multi steps. The corresponding acetonitrile thioalkyl (7) was cyclized by refluxing with acetic acid to afford 4-(((6-amino-7H-[1,2,4]triazolo[3,4- b][1,3,4]thiadiazin-3-yl)methoxy)methyl)-2,6-dimethoxyphenol (8). Two new series of 4-(((6-(3- (4-aryl)thioureido)-7H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazin-3-yl)methoxy)methyl)-2,6- dimethoxyphenol (9a-c) and of 4-(((6-(substitutedbenzamido)7H-[1,2,4]triazolo[3,4- b][1,3,4]thiadiazin-3-yl)methoxy)methyl)-2,6-dimethoxyphenol (10a-c) were synthesized as new derivatives for fused 1,2,4-trizaole-thiadiazine(8). The antioxidants of newly compounds were evaluated by DPPH
... Show MoreIn this study new derivatives of O-[2-{''2-Substituted Aryl (''1,''3,''4 thiadiazolyl) ['3,'4-b]-'1,'2,'4- Triazolyl]-Ethyl]-p- chlorobenzald oxime (6-11)have been synthesized from the starting material p-chloro – E- benzaldoxime 1.Compound 2 was synthesized by the reaction of p-chloro – E- benzaldoxime with ethyl acrylate in basic medium. Refluxing compound 2 with hydrazine hydrate in ethanol absolute afforded 3. Derivative 4 was prepared by the reaction of 3 with carbon disulphide, treated of compound 4 with hydrazine hydrate gave 5. The derivatives (6-11) were prepared by the reaction of 5 with different substitutesof aromatic acids. The structures of these compounds were characterized from their melting points, infrared spectroscopy
... Show MoreThe natural ventilation in buildings is one of effective strategies for achieving energy efficiency in buildings by employing methods and ways of passive design, as well as its efficiency in providing high ranges of thermal comfort for occupants in buildings and raises their productivity. Because the concept of natural ventilation for many people confined to achieve through the windows and openings only, become necessary to provide this research to demonstrate the various passive design strategies for natural ventilation. Then, research problem: Insufficient knowledge about the importance and mechanism of the application of passive design strategies for natural ventilation in buildings. The research objective is: Analysis of passive desi
... Show MoreThe M(II) complexes [M2 (phen)2 (L)(H2O)2Cl2 ] in (2:1:2 (M:L:phen) molar ratio, (where M(II) =Mn(II), Co(II), Cu(II), Ni(II) and Hg(II), phen = 1,10-phenanthroline; L = 2,2'-(1Z,1'Z)-(biphenyl-4,4'-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1- ylidene)diphenol] were synthesized. The mixed complexes have been prepared and characterized using 1H and13C NMR, UV/Visible, FTIR spectra methods and elemental microanalysis, as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: Staphylococcus aurous, Escherichia coli, Bacillussubtilis and Pseudomonasaeroginosa to assess their antimicrobial properties. From this study shows that all the
... Show MoreThe reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as magnetic susceptibility measurements. From the above data, the proposed molecular structu
... Show More