In this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this work, elastic cross sections (ECS) and inelastic cross-sections (ICS) for positron interaction in human tissues were studied. The elastic scattering is obtained from the Rutherford differential cross-section. Gryzinski's excitation function is used within the first-born approximation to determine the core and valence of ICS. The results are presented graphically. The ECS increases rapidly as the scattering energy approaches zero and becomes dependent on the atomic number of elements in organs. The ICS has reached a maximum value of around 100 eV. Increasing positron energy leads to an increase in the elastic and inelastic mean free paths. The simulations agree with many other studies dealing with the same parameters and conditions.
In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.
This Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreLet G be a graph, each edge e of which is given a weight w(e). The shortest path problem is a path of minimum weight connecting two specified vertices a and b, and from it we have a pre-topology. Furthermore, we study the restriction and separators in pre-topology generated by the shortest path problems. Finally, we study the rate of liaison in pre-topology between two subgraphs. It is formally shown that the new distance measure is a metric
In this paper, we investigate the behavior of the bayes estimators, for the scale parameter of the Gompertz distribution under two different loss functions such as, the squared error loss function, the exponential loss function (proposed), based different double prior distributions represented as erlang with inverse levy prior, erlang with non-informative prior, inverse levy with non-informative prior and erlang with chi-square prior.
The simulation method was fulfilled to obtain the results, including the estimated values and the mean square error (MSE) for the scale parameter of the Gompertz distribution, for different cases for the scale parameter of the Gompertz distr
... Show MoreThe objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <
... Show MoreHepatitis B is an inflammation of the liver that caused by Hepatitis B virus (HBV) which is DNA virus that infects the human and some kinds of animals such as chimpanzees and birds. This disease considered as the major disease of mankind and a serious global public health problem. HBsAg, HBeAg, HBcAb, HBeAb and HBsAb are markers used to detect the presence and the stage of infection. The current study included (181) individuals from both sexes, (137) males and (44) females. By ratio 3.11: 1.The mean age of patients 2.4033 ± 0.83519 (range 18-73) years as follows < 20 (11.6%), 21–40 (47.5%), 41–60 (29.8%) and > 60 (11.0%) . These patients are 73 (40.4%) Blood donors from Central Blood Bank, 88 (48.6%) Chronic kidney failure at Ibn –
... Show MoreThe purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
In this paper two ranking functions are employed to treat the fuzzy multiple objective (FMO) programming model, then using two kinds of membership function, the first one is trapezoidal fuzzy (TF) ordinary membership function, the second one is trapezoidal fuzzy weighted membership function. When the objective function is fuzzy, then should transform and shrinkage the fuzzy model to traditional model, finally solving these models to know which one is better
The primary objective of current study was to evaluate the effects of different anastrozole dosages on the physiological performance, hematological profile, and serum biochemical parameters of broiler roosters. A total of Twenty-six Lohmann Brown roosters were randomly assigned to four treatment groups. The first group (T1) served as the control and received no anastrozole, while the other groups (T2, T3, and T4) were administered 0.2 mg, 0.4 mg, and 0.6 mg of anastrozole per day, respectively. The first and second groups consisted of six birds each, while the third and fourth groups had seven. The results demonstrated a significant improvement (P ≤ 0.05) in several physiological and biochemical parameters in the group receiving 0.6 mg of
... Show More