Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinyl] (MEH-PPV) thin films were created in this study using both spin coating and drop casting processes. MEH-PPV thin films generated by Ferric Chloride (FeCl3) doping (0.03, 0.06, 0.09, and 0.12 wt%) were studied for some physical features using Fourier-Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-ray Spectroscopy (EDX). An FTIR test showed that there was no chemical reaction that occurred between Ferric Chloride (FeCl3) and MEH-PPV, but rather a physical one, that is, an organic material composite occurred. As for FE-SEM, the pure sample MEH-PPV formed uniformly, but when FeCl3 was added by weight, we have different circles that indicate the formation of adsorption energy and that the highest adsorption energy appears at MEH-PPV/FeCl3 (0.06%), as well as EDX, which indicates the absence of undesirable elements and indicates the presence of small peaks for iron (Fe) and chlorine (Cl). Peaks of carbon(C) and oxygen (O) types indicate the presence of the chemical elements of MEH-PPV.
Magnetic nanoparticles (MNPs) of iron oxide (Fe3O4) represent the most promising materials in many applications. MNPs have been synthesized by co-precipitation of ferric and ferrous ions in alkaline solution. Two methods of synthesis were conducted with different parameters, such as temperature (25 and 80 ̊C), adding a base to the reactants and the opposite process, and using nitrogen as an inert gas. The product of the first method (MNPs-1) and the second method (MNPs-2) were characterized by x-ray diffractometer (XRD), Zeta Potential, atomic force microscope (AFM) and scanning electron microscope (SEM). AFM results showed convergent particle size of (MNPs-1) and (MNPs-2) with (86.01) and (74.14)
... Show MoreThis work deals with preparation of Sulfated Zirconia catalyst (SZ) for isomerization of n-hexane model and refinery light naphtha, as well as enhanced the role of promoters to get the target with the mild condition, stability, and to prevent formation of coke precursors on strong acidic sites of the catalyst. The prepared SZ catalysts were characterization by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer –Emmett-Teller (BET) surface area analysis, Thermogravimetric Analysis (TGA), Scanning Electron Microscope (SEM) and atomic force microscopy (AFM) Analyzer. The results illustrate that the maximum conversion and selectivity for n-hexane isomerization with Ni-WSZ and operating temperature of 150 °C
... Show MoreCalcium-Montmorillonite (bentonite) [Ca-MMT] has been prepared via cation exchange reaction using benzalkonium chloride [quaternary ammonium] as a surfactant to produce organoclay which is used to prepare polymer composites. Functionalization of this filler surface is very important factor for achieving good interaction between filler and polymer matrix. Basal spacing and functional groups identification of this organoclay were characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy respectively. The (XRD) results showed that the basal spacing of the treated clay (organoclay) with the benzalkonium chloride increased to 15.17213 0A, this represents an increment of about 77.9% in the
... Show MoreWith the aim of developing potential antimicrobials, a series of novel Ciprofloxacin methylene isatin derivatives incorporating different aromatic aldehydes were synthesized and characterized by FTIR, 1H NMR, Mass spectroscopy and bases of elemental analysis. In addition, the in vitro antibacterial and antifungal properties were tested against some human pathogenic microorganisms by employing the disc diffusion technique. A majority of compounds were showing activity against several of the microorganisms. The relationship between the functional group variation and the biological activity of the evaluated compounds is discussed. From comparisons of the compounds, 3c was determined to be the most active compound.
Enticed by the present scenario of infectious diseases, four new Co(II), Ni(II), Cu(II), and Cd(II) complexes of Schiff base ligand were synthesized from 6,6′-((1E-1′E)(phenazine-2,3-dielbis(azanylidene)-bis-(methanylidene)-bis-(3-(diethylamino)phenol)) (
New Schiff base, namely [2-(carboxy methylene-amino)-phenyl imino] acetic acid (L) and its some metal complexes [LCo.2H2O], [LNi.2H2O], [LCu].3H2O, [LCd.2H2O], [LHg.2H2O] and [LPb.2H2O], were reported and characterized by elemental analysis, metal content, spectroscopic methods, magnetic moments and conductivity measurements, it is found that the geometrical structures of these complexes are octahedral [Co(II), Ni(II), Cd(II), Hg(II), Pb(II) and square planar Cu(II).The complexes have been found to posses 1:1 (M:L) stoichiometry
Polymer metal complexes of poly ethylene glycol acetal and Ag (I), Cu (II), Ni (II), Mn (II), Co (III) and Hg (II) were prepared from the reaction of PEG with aldehyde derived from Erythro-ascorbic acid (pentulosono-ɣ-lactone-2, 3- enedianisoate). All these compounds were characterized by Thin Layer Chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR,13CNMR, and mass spectra. It has been established that, the polymer and its metal complexes showed good activities against four pathogenic bacteria (Escherichia coli ,Klebsiellapneumonae, Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast). The polymer metal complexes showed higher activity than the free polymer. The
... Show MoreN-Benzylidene m-nitrobenzeneamines (Schiff bases) were prepared by condensation of m-nitroaniline with aromatic aldehydes. These Schiff bases were found to react with maleic anhydride to give 2-Aryl-3-(m-nitrophenyl)-2, 3-dihydro [1, 3] oxazepine–4, 7–diones and with phthalic anhydride to give 2-Aryl-3–(m-nitrophenyl)–2, 3–dihydrobenz|| 1, 2-e|||| 1, 3] oxazepine–4, 7-diones which were reacted with pyrrolidine to give the anilide–pyrrolidides of maleic acid and phthalic acid.