In the present work, the magnetic dipole and electric quadrupole moments for some sodium isotopes have been calculated using the shell model, considering the effect of the two-body effective interactions and the single-particle potentials. These isotopes are; 21Na (3/2+), 23Na (3/2+), 25Na (5/2+), 26Na (3+), 27Na (5/2+), 28Na (1+) and, 29Na (3/2+). The one-body transition density matrix elements (OBDM) have been calculated using the (USDA, USDB, HBUMSD and W) two-body effective interactions carried out in the sd-shell model space. The sd shell model space consists of the active 2s1/2, 1d5/2, and1d1/2 valence orbits above the inert 16O nucleus core, which remains closed. Skyrme interaction was implemented to generate the single-particle matrix elements with Hartree-Fock approximation and compared with those of harmonic oscillator and Wood-Saxon potentials. From the outcome of our investigation, it is possible to conclude that the shell model calculations with Skyrme-type interaction give a reasonable description for most of the selected Na isotopes. No significant difference was noticed for the magnetic dipole moments and electric quadrupole moments with experimental data, where all signs for the experimental data are reproduced correctly.
The research aims at integrating the disclosure of the business models with the qualitative characteristics of accounting information. To achieve this, the elements of the business model should be identified and disclosed, and then study the possibility of integrating the disclosure of the business model with the qualitative characteristics of accounting information.
To achieve this objective, the research was based on the indicators of disclosure of the business model of the International Accounting Standards Board to measure the disclosure of the business model.
The research reached a number of conclusions, the most important of which were as follows:
Fi
... Show MoreDesign of experiments (DOE) was made by Minitab software for the study of three factors used in the precipitation process of the Sodium Aluminate solution prepared from digestion of α-Al2O3 to determine the optimum conditions to a produce Boehmite which is used in production of ɤ-Al2O3 during drying and calcination processes, the factors are; the temperature of the sodium aluminate solution, concentration of HCl acid added for the precipitation and the pH of the solution at which the precipitation was ended. The design of the experiments leads to 18 experiments.
The results show that the optimum conditions for the precipitation of the sodium aluminate solution which
... Show MoreThis work revealed the spherical aromaticity of some inorganic E4 cages and their protonated E4H+ ions (E=N, P, As, Sb, and Bi). For this purpose, we employed several evaluations like (0D-1D) nucleus independent chemical shift (NICS), multidimensional (2D-3D) off-nucleus isotropic shielding σiso(r), and natural bond orbital (NBO) analysis. The magnetic calculations involved gauge-including atomic orbitals (GIAO) with two density functionals B3LYP and WB97XD, and basis sets of Jorge-ATZP, 6-311+G(d,p), and Lanl2DZp. The Jorge-ATZP basis set showed the best consistency. Our findings disclosed non-classical aromatic characters in the above molecules, which decreased from N to Bi cages. Also, the results showed more aromaticity in E4 than E4H+
... Show MoreLevofloxacin belongs to the fluoroquinolone family; it is a potent broad-spectrum bactericidal agent. The pharmacophore required for significant antibacterial activity is the C-3 carboxylic acid group and the 4-pyridine ring with the C-4 carbonyl group, into which binding to the DNA bases occur. In this work, we tried to show that by masking the carboxyl group through amide formation using certain amines to form levofloxacin carboxamides, an interesting activity is kept. Levofloxacin carboxamides on the C-3 group were prepared, followed by the formation of their copper complexes. The target compounds were characterized by FT-IR, elemental analysis. The antimicrobial activity of the target compounds was evaluated and showed satisfactory resu
... Show MoreNovel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
In this paper, we propose an approach to estimate the induced potential, which is generated by swift heavy ions traversing a ZnO thin film, via an energy loss function (ELF). This induced potential is related to the projectile charge density, ρq(k) and is described by the extended Drude dielectric function. At zero momentum transfer, the resulting ELF exhibits good agreement with the previously reported results. The ELF, obtained by the extended Drude model, displays a realistic behavior over the Bethe ridge. It is observed that the induced potential relies on the heavy ion velocity and charge state q. Further, the numerical results show that the induced potential for neutral H, as projectile, dominates when the heavy ion velocity is less
... Show More
