In this study, the effect of Nd: YAG laser on the activity of superoxide dismutase (SOD) and alcoholdehydrogenase (ADH) was investigated. The Saccharomyces cells were irradiated using 532nm Q-Switched Nd: YAG laser with (1Hz) frequency. Different fluences 11.3, 22.6 and 33.9mJ/cm2 and different number of pulses 15, 30 and 60 pulse were used. The irradiated cells were incubated in a liquid nutritive medium for 24 hours. After incubation, the cells were harvested and disrupted to extract the intracellular enzymes and their activities were assessed. In comparison with the control, the irradiated cells showed a significant increase in the activity and the specific activity of SOD at energy densities of 11.3 and 22.6mJ/cm2 at 30 and 60 pulses respectively. Maximum activity and specific activity of ADH was observed using 11.3mJ/cm2 and 22.6mJ/cm2 at 15 pulses. While an inhibition in both activity and specific activity of two enzymes was observed at 33.9 mJ/cm2. It is concluded that the fluence at 22.6mJ/cm2 stimulate the activity and specific activity of the two enzymes to a maximum values.
Wellbore instability problems cause nonproductive time, especially during drilling operations in the shale formations. These problems include stuck pipe, caving, lost circulation, and the tight hole, requiring more time to treat and therefore additional costs. The extensive hole collapse problem is considered one of the main challenges experienced when drilling in the Zubair shale formation. In turn, it is caused by nonproductive time and increasing well drilling expenditure. In this study, geomechanical modeling was used to determine a suitable mud weight window to overpass these problems and improve drilling performance for well development. Three failure criteria, including Mohr–Coulomb, modifie
Wearable sensors are a revolutionary tool in agriculture because they collect accurate data on plant environmental conditions that affect plant growth in real-time. Moreover, this technology is crucial in increasing agricultural sustainability and productivity by improving irrigation strategies and water resource management. This review examines the role of wearable sensors in measuring plant water content, leaf and air humidity, stem flow, plant and air temperature, light, and soil moisture sensors. Wearable sensors are designed to monitor various plant physiological parameters in real-time. These data, obtained through wearable sensors, provide information on plant water use and physiology, making our agricultural choices more informed an
... Show MoreThe gas sensing properties of Co3O4and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating
... Show MoreBackground: Acute myeloid leukemia (AML) is an adult leukemia characterized by rapid proliferation of undifferentiated myeloid precursors, leading to bone marrow (BM) failure and impaired erythropoiesis. The p53 tumor suppressor protein regulates cell division and inhibits tumor development by preventing cell proliferation of altered or damaged DNA. It orchestrates various cellular reactions, including cell cycle arrest, DNA repair, and antioxidant properties. Objectives: To investigate the relationship of P53 serum level with hematological findings, remission, and survival status in de novo AML patients. Methods: This is a cross-sectional study that enrolled 63 newly diagnosed de novo AML patients, and 15 sex- and age-matched healt
... Show MoreA new, simple, sensitive and fast developed method was used for the determination of methyldopa in pure and pharmaceutical formulations by using continuous flow injection analysis. This method is based on formation a burgundy color complex between methyldopa andammonium ceric (IV) nitrate in aqueous medium using long distance chasing photometer NAG-ADF-300-2. The linear range for calibration graph was 0.05-8.3 mmol/L for cell A and 0.1-8.5 mmol/L for cell B, and LOD 952.8000 ng /200 µL for cell A and 3.3348 µg /200 µL for cell B respectively with correlation coefficient (r) 0.9994 for cell A and 0.9991 for cell B, RSD % was lower than 1 % for n=8. The results were compared with classical method UV-Spectrophotometric at λ max=280 n
... Show More