Solid state blue laser source is a solid state laser include generation of IR laser light 1064 nm and companied with other wavelength 810 nm that invented from other active medium (Tm:ZBLAN) and non-linear crystal (CLBO) are used to generate fourth harmonic of the resultant wavelength 1874 nm that is blue laser light of 460nm. Several optical component have been designed by multilayer dielectric structure and anti reflection coating analysis. By using MATLAB soft ware, the simulation done and used the following non linear material (ZrO2, HfO2, MgO, SiO, Ta2O5 CaF2) and other linear material (ZnO, MgF2, GaAs, AlAs, BaF2, LiF, TiO2) as coating material. The result showed that as more quarter wave layers are added to the structure, the reflectance spectrum acquires more oscillatory features, and a narrow, flat-topped high-reflectance region grows around the design wavelength, GaAs and MgF2 represent good choice for the coating material of the front and exit mirror of the system especially produces very narrow wavelength band width and excellent value for R=100 % , LiF2 and BaF2 are good choice used to coat non linear crystal. For the polarized dichroic beam splitter, 450 represent good choice for the incident angle and BK7 as substrate material and HfO2 as high refractive index material and ZnO as low index material for coating.
This research represents a practical attempt applied to calibrate and verify a hydraulic model for the Blue Nile River. The calibration procedures are performed using the observed data for a previous period and comparing them with the calibration results while verification requirements are achieved with the application of the observed data for another future period and comparing them with the verification results. The study objective covered a relationship of the river terrain with the distance between the assumed points of the dam failures along the river length. The computed model values and the observed data should conform to the theoretical analysis and the overall verification performance of the model by comparing it with anothe
... Show MoreMany researchers have tackled the shear behavior of Reinforced Concrete (RC) beams by using different kinds of strengthening in the shear regions and steel fibers. In the current paper, the effect of multiple parameters, such as using one percentage of Steel Fibers (SF) with and without stirrups, without stirrups and steel fibers, on the shear behavior of RC beams, has been studied and compared by using Finite Element analysis (FE). Three-dimensional (3D) models of (RC) beams are developed and analyzed using ABAQUS commercial software. The models were validated by comparing their results with the experimental test. The total number of beams that were modeled for validation purposes was four. Extensive pa
... Show MoreThe current research deals with studying the aesthetics of symbolic values in the design of internal spaces and their connotations through their existence as a material value, as well as the symbolic meanings and their connotations that touch the spiritual and emotional side of the human being as an intangible value, and the research included four chapters, so the research problem was embodied by the following question (What is the role of values Symbolism and aesthetics in the design of interior spaces)? Therefore, the aim was to clarify the role of symbolic values and their aesthetics in the design of internal spaces. The first chapter included the importance of research, the need for it, the limits of the research and its terminology.
... Show MoreIn present work an investigation for precise hole drilling via continuous wave (CW) CO2 laser at 150 W maximum output power and wavelength 10.6 μm was achieved with the assistance of computerized numerical controlled (CNC) machine and assist gases. The drilling process was done for thin sheets (0.1 – 0.3 mm) of two types of metals; stainless steel (sst) 321H, steel 33 (st). Changing light and process parameters such as laser power, exposure time and gas pressure was important for getting the optimum results. The obtained results were supported with computational results using the COMSOL 3.5a software code.
Several types of laser are used in experimental works in order to study the effects of laser on blood vessel. They differ from each other by a lot of properties mainly in wavelength, energy of the laser and pulse duration. In this study argon laser (488 nm- 514 nm) and continuous Nd: YAG laSer (1064 nm), have been applied to 50 samples of sheep blgod tesselS. Histologically, tha results of the study were different According to the txpe of L`sar used; apgon larer had distrabtave effects on $he blood vessal while continuous Nd: YAG laser Appeaped to be the safesd one on the blmod vessel architecture. This study concluded that argoj laser has da-aging ef&ect on
... Show MoreThe objective of this in vivo study is to investigate the effects of 337.1 nm pulsed N2 laser on cellular immune response represented by lymphocyte transformation capacity and phagocytosis activity in laboratory animals. The samples include 60 adult male BALB/c mice, were divided into control group and experimental groups. The experimental groups were divided into two main groups according to the time period after N2 laser irradiation. Each group was divided into 9 subgroups which exposed to N2 laser radiation at different values of pulse repetition rates and exposure times. The results of immunological tests demonstrated that the exposure to 180 J/cm2 of N2 laser radiation induce adverse effect to cellular immune response. The results o
... Show MoreA hybrid cadmium sulfide nanoparticles (CdSNPs) electroluminescence (EL) device was fabricated by Phase – Segregated Method and characterized. It was fabricated as layers of (ITO/poly-TPD:CdS ) and (ITO/poly-TPD:CdS /Alq3). Poly-TPD is an excellent Hole Transport Layer (HTL), CdSNPs is an emitting layer and Alq3 as electron transport layer (ETL). The EL of Organic-Inorganic Light Emitting Diode (OILED) was studied at room temperature at 26V. This was achieved according to band-to-band transition in CdSNPs. From the I-V curve behavior, the addition of Alq3 layer decreased the transfer of electrons by about 250 times. The I-V behavior for (poly-TPD/CdS) is exponential with a maximum current of 4500 µA. While, the current i
... Show MoreThe analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is
... Show MoreFour simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to lo
... Show MoreThe aim for this research is to investigate the effect of inclusion of crack incidence into the 2D numerical model of the masonry units and bonding mortar on the behavior of unreinforced masonry walls supporting a loaded reinforced concrete slab. The finite element method was implemented for the modeling and analysis of unreinforced masonry walls. In this paper, ABAQUS, FE software with implicit solver was used to model and analyze unreinforced masonry walls which are subjected to a vertical load. Detailed Micro Modeling technique was used to model the masonry units, mortar and unit-mortar interface separately. It was found that considering potential pure tensional cracks located vertically in the middle of the mortar and units show
... Show More