Joining tissue is a growing problem in surgery with the advancement of the technology and more precise and difficult surgeries are done. Tissue welding using laser is a promising technique that might help in more advancement of the surgical practice. Objectives: To study the ability of laser in joining tissues and the optimum parameters for yielding good welding of tissues. Methods: An in-vitro study, done at the Institute of Laser, Baghdad University during the period from October 2008 to February 2009. Diode and Nd-YAG lasers were applied, using different sessions, on sheep small intestine with or without solder to obtain welding of a 2-mm length full thickness incision. Different powers and energies were used to get maximum effect. Results: Welding of sheep intestine had been achieved by Nd-YAG laser 1064 nm at 400 and 500 mJ and PRR 4Hz, using human albumin 20% as a solder. Welding failed using the diode laser 4W for 10 min with albumin and indocyanine green. Conclusion: Laser may be useful tool in certain condition for joining tissue and wound closure. This is important because in certain circumstances no other technique is feasible for wound closure.
This research was aimed to study the osmotic efficiency of the draw solutions and the factors affecting the performance of forward osmosis process : The draw solutions used were magnesium sulfate hydrate (MgSO4.7H2O) pojtassium chloride (KCL), calcium chloride (CaCl2) and ammonium bicarbonate (NH4HCO3). It was found that water flux increases with increasing draw solution concentration, and feed solution flow rate and decreases with increasing draw solution flow rate and feed solution concentration. And also found that the efficiency of the draw solutions is in the following order:
CaCl2> KCI > NH4HCO3> MgSO4.7H
Gypseous soil is prevalent in arid and semi-arid areas, is from collapsible soil, which contains the mineral gypsum, and has variable properties, including moisture-induced volume changes and solubility. Construction on these soils necessitates meticulous assessment and unique designs due to the possibility of foundation damage from soil collapse. The stability and durability of structures situated on gypseous soils necessitate close collaboration with specialists and careful, methodical preparation. It had not been done to find the pattern of failure in the micromechanical behavior of gypseous sandy soil through particle image velocity (PIV) analysis. This adopted recently in geotech
Nanosilica was extracted from rice husk, which was locally collected from the Iraqi mill at Al-Mishikhab district in Najaf Governorate, Iraq. The precipitation method was used to prepared Nanosilica powder from rice husk ash, after treating it thermally at 700°C, followed by dissolving the silica in the alkaline solution and getting a sodium silicate solution. Two samples of the final solution were collected to study the effect of filtration on the purity of the sample by X-ray fluorescence spectrometry (XRF). The result shows that the filtered samples have purity above while the non-filtered sample purity was around The structure analysis investigated by the X-ray diffraction (XRD), found that the Nanosilica powder has an amorphous
... Show MoreUrban land uses of all kinds are the constituent elements of the urban spatial structure. Because of the influence of economic and social factors, cities in general are characterized by the dynamic state of their elements over time. Urban functions occur in a certain way with different spatial patterns. Hence, urban planners and the relevant urban management teams should understand the future spatial pattern of these changes by resorting to quantitative models in spatial planning. This is to ensure that future predictions are made with a high level of accuracy so that appropriate strategies can be used to address the problems arising from such changes. The Markov chain method is one of the quantitative models used in spatial planning to ana
... Show MoreCadmium is one of the heavy metal found in the wastewater of many industries. The electrocoagulation offers many advantages for the removal of cadmium over other methods. So the removal of cadmium from wastewater by using electrocoagulation was studied to investigate the effect of operating parameters on the removal efficiency. The studied parameters were the initial pH, initial concentration, and applied voltage. The study experiments were conducted in a batch reactor with with two pairs of aluminum electrodes with dimension and 2mm in thick with 1.5 cm space between them. The optimum removal was obtained at pH =7, initial concentration = 50 mg/L, and applied voltage = 20 V and it was 90%.
Compaction curves are widely used in civil engineering especially for road constructions, embankments, etc. Obtaining the precise amount of Optimum Moisture Content (OMC) that gives the Maximum Dry Unit weight gdmax. is very important, where the desired soil strength can be achieved in addition to economic aspects.
In this paper, three peak functions were used to obtain the OMC and gdmax. through curve fitting for the values obtained from Standard Proctor Test. Another surface fitting was also used to model the Ohio’s compaction curves that represent the very large variation of compacted soil types.
The results showed very good correlation between the values obtained from some publ
... Show MoreCopper, and its, alloys and composites (being the matrix), are broadly used in the electronic as well as bearing materials due to the excellent thermal and electrical conductivities it has.
In this study, powder metallurgy technique was used for the production of copper graphite composite with three volume perc ent of graphite. Processing parameters selected is (900) °C sintering temperature and (90) minutes holding time for samples that were heated in an inert atmosphere (argon gas). Wear test results showed a pronounced improvement in wear resistance as the percent of graphite increased which acts as solid lubricant (where wear rate was decreased by about 88% as compared with pure Cu). Microhardness and
... Show MoreThe disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste