An ingrowing toenail is a common problem affecting mainly adolescents and young adults, with a male predominance of 3:1. The disorder generally occurs in big toes. It is painful and often chronic and it affects work and social activities. Most patients initially complain of pain and later discharge, infection and difficulty in walking occur. The Objectives: The purpose of the study was to evaluate the efficacy and safety of (10600nm) CO2 laser in the treatment of ingrowing toe nail. Patients, Materials & Methods: This study was done in laser medicine research clinics from July 2013 to the end of December 2013; 10 patients including 7(70%) males and 3 (30%) females with age ranging from 18 years to 70 years with mean age of 44 years old. The details of the procedure were explained verbally to the patients. Patients were examined and evaluated clinically and prepared for surgery. A CO2 continuous wave 1-40W laser emitted at 10600 nm; the laser was delivered via an articulated arm. Laser was used for cutting the nail and vaporization of the underlying germinal layer (matrix). Results: The preliminary clinical findings included sufficient hemostasis, coagulation properties and precise incision margin with all of the surgical procedure. The postoperative advantages, i.e., lack of pain, bleeding, infection and, recurrence the good wound healing and overall satisfaction were observed in the clinical application of laser in treatment of ingrowing toenail. Conclusion: The clinical application of the CO2 (10600 nm) laser in surgical procedures prove to be of beneficial effect for daily practice. It can be considered practical, effective and easy to use, and it offers a safe, acceptable, and impressive alternative for conventional techniques of surgical treatment of in growing toenail.
The study aimed to prepare quick response codes to learn some of the technical skills of the second graders in the Faculty of Physical Education and Sports Sciences. The experimental method was used in the design of the experimental and control experimental and control groups. The research sample was represented by second-graders in the College of Physical Education and Sports Sciences / University of Baghdad, and by lot, the second division (a) was chosen to represent the experimental group that applied the inverse method using the QR code, and the second division (g) to represent the control group and applied the traditional method. (10) Students per group. After the tribal tests, his main experiment was carried out for 10 weeks with one
... Show MoreTwo Prototypes of Transversely Excited at atmospheric pressure (TEA) Nitrogen laser systems (One Stage Blumlein Circuit and Two Stage Blumlein Circuit) were fabricated and operated. High voltage power supply with variable operating voltage (0-20 kv) and operating current (1-3A) was built and tested successfully. The gas flow rate of 15 L/ min and 10 L/ min for OSBC and TSBC was used. The performance of the fabricated systems was studied extensively reaching to the optimum operating conditions. The obtained laser output energy for the first system has linear relationship with the applied voltage. The maximum output energy was about (1.14 mJ) with (10.40) ns pulse duration and the half-wave divergence angle was about (0.1455 m rad). In the
... Show MoreIn this study, a mathematical model is presented to study the chemisorption of two interacting atoms on solid surface in the presence of laser field. Our mathematical model is based on the occupation numbers formula that depends on the laser field which we derived according to Anderson model for single atom adsorbed on solid surface. Occupation numbers formula and chemisorption energy formula are derived for two interacting atoms (as a diatomic molecule) as they approach to the surface taking into account the correlation effects on each atom and between atoms. This model is characterized by obvious dependence of all relations on the system variables and the laser field characteristics which gives precise description for the molecule –
... Show MoreAtmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom
... Show MoreIn this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.
The project has been described the design and construction of a reliable optical testing platform used for evaluate the reflectivity of metal surfaces treated with special paintings required for laser beam attenuation. The platform comprises an Nd-YAG laser system which has been designed and fabricated with specifications to be compatible with their corresponding in laser range finder transmitters used for various applications. The reflectivity of various attenuating paintings, at different detection angles, has been observed. Moreover, the variation of the reflected energy with painting type and metal type to be painted has been studied experimentally. Results illustrated the existence of a definite angle, at which the reflectivity was max
... Show MoreThe effect of high energy radiation on the energy gap of compound semiconductor Silicon Carbide (SiC) are viewed. Emphasis is placed on those effects which can be interpreted in terms of energy levels. The goal is to develop semiconductors operating at high temperature with low energy gaps by induced permanent damage in SiC irradiated by gamma source. TEACO2 laser used for producing SiC thin films. Spectrophotometer lambda - UV, Visible instrument is used to determine energy gap (Eg). Co-60, Cs-137, and Sr-90 are used to irradiate SiC samples for different time of irradiation. Possible interpretation of the changing in Eg values as the time of irradiation change is discussed
The paper include studies the effect of solvent of dye doped in polymeric laser sample which manufactured in primo press way, which is used as an active (R6G) tunable dye lasers. The remarks show that, when the viscosity of the solvent (from Pure Water to Ethanol), for the same concentration and thickness of the performance polymeric sample is increased, the absorption spectrum is shifts towards the long wave length (red shift), & towards short wave length (blue shift) for fluorescence spectrum, also increased the quantum fluorescence yield. The best result we obtained for the quantum fluorescence yield is (0.882) with thickness (0.25mm) in Ethanol solvent in concentration (2*10-3mole/liter), while when we used the Pure Water as a solvent,
... Show MoreAim of the study: Using surface roughness and tensile bond strength tests, the objective of this investigation was to ascertain the impact of laser surface modification on the binding strength of injectable thermoplastic acrylic denture base material to acrylic-based soft-liner material. Materials and methods: Acrylic base soft liner material was bonded to injectable thermoplastic acrylic resin (Deflex). Forty specimens were created (20 disc, 20 dumbbells) 10 of each specimen type as control specimens, and 10 were treated with nano pulse Nd: YAG laser. The data were analyzed using the Kruskal-Wallis test and unpaired t-test (a=.05) and the roughness test was performed utilizing a double column universal test machine. Results: Compar
... Show MoreThe optimal combination of aluminum quality, sufficient strength, high stress to weight ratio and clean finish make it a good choice in driveshafts fabrication. This study has been devoted to experimentally investigate the effect of applying laser shock peening (LSP) on the fatigue performance for 6061-T6 aluminum alloy rotary shafts. Q-switched pulsed Nd:YAG laser was used with operating parameters of 500 mJ and 600 mJ pulse energies, 12 ns pulse duration and 10 Hz pulse repetition rate. The LSP is applied at the waist of the prepared samples for the cyclic fatigue test. The results show that applying 500 mJ pulse energy yields a noticeable effect on enhancing the fatigue strength by increasing the required number of cycles to fracture the
... Show More