An ingrowing toenail is a common problem affecting mainly adolescents and young adults, with a male predominance of 3:1. The disorder generally occurs in big toes. It is painful and often chronic and it affects work and social activities. Most patients initially complain of pain and later discharge, infection and difficulty in walking occur. The Objectives: The purpose of the study was to evaluate the efficacy and safety of (10600nm) CO2 laser in the treatment of ingrowing toe nail. Patients, Materials & Methods: This study was done in laser medicine research clinics from July 2013 to the end of December 2013; 10 patients including 7(70%) males and 3 (30%) females with age ranging from 18 years to 70 years with mean age of 44 years old. The details of the procedure were explained verbally to the patients. Patients were examined and evaluated clinically and prepared for surgery. A CO2 continuous wave 1-40W laser emitted at 10600 nm; the laser was delivered via an articulated arm. Laser was used for cutting the nail and vaporization of the underlying germinal layer (matrix). Results: The preliminary clinical findings included sufficient hemostasis, coagulation properties and precise incision margin with all of the surgical procedure. The postoperative advantages, i.e., lack of pain, bleeding, infection and, recurrence the good wound healing and overall satisfaction were observed in the clinical application of laser in treatment of ingrowing toenail. Conclusion: The clinical application of the CO2 (10600 nm) laser in surgical procedures prove to be of beneficial effect for daily practice. It can be considered practical, effective and easy to use, and it offers a safe, acceptable, and impressive alternative for conventional techniques of surgical treatment of in growing toenail.
Abstract Additive manufacturing has been recently emerged as an adaptable production process that can fundamentally affect traditional manufacturing in the future. Due to its manufacturing strategy, selective laser melting (SLM) is suitable for complicated configurations. Investigating the potential effects of scanning speed and laser power on the porosity, corrosion resistance and hardness of AISI 316L stainless steel produced by SLM is the goal of this work. When compared to rolled stainless steel, the improvement is noticeable. To examine the microstructure of the samples, the optical microscopy (OM), scanning electron microscopy (SEM), and EDX have been utilized. Hardness and tensile strength were us
... Show MoreIn humans, Pseudomonas aeruginosa is the second most frequent gram negative nosocomial pathogen in hospitals and has the highest case-fatality rate of all hospital-acquired bacteremia because of the hardy resistance of these bacteria to mechanical cleansing as well as to disinfectant, and many antibiotics. The susceptibility of bacteria against the antibiotics is modulated by several local factors such as temperature which modified drug efficacy, so this study was carried out to evaluate the effect of different temperature (20,42,45)Ċon the susceptibility of Pseudomonas aeruginosa to the minimum inhibitory concentrations (MIC) of the antimicrobial agents before and after irradiation. The samples collected from 150 persons suffering from
... Show MoreDielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show MoreThe laser micro-cutting process is the most widely commonly applied machining process which can be applied to practically all metallic and non-metallic materials. While this had challenges in cutting quality criteria such as geometrical precision, surface quality and numerous others. This article investigates the laser micro-cutting of PEEK composite material using nano-fiber laser, due to their significant importunity and efficiency of laser in various manufacturing processes. Design of experiential tool based on Response Surface Methodology (RSM)-Central Composite Design (CCD) used to generate the statistical model. This method was employed to analysis the influence of parameters including laser speed,
... Show MoreTo learn how the manner of preparation influences film development, this study examined film expansion under a variety of deposition settings. To learn about the membrane’s properties and to ascertain the optimal pretreatment conditions, which are represented by ambient temperature and pressure, Laser pressure of 2.5[Formula: see text]m bar, the laser energy density of 500[Formula: see text]mJ, distortion ratio ([Formula: see text]) as a function of laser pulse count, all achieved with the double-frequency Nd: YAG laser operating in quality-factor mode at 1064[Formula: see text]nm. MgxZn[Formula: see text] films of thickness [Formula: see text][Formula: see text]nm were deposited on glass substrates at pulse
... Show MoreIn this work, the structure properties of nano Lead sulfide PbS thin films are studied. Thin samples were prepared by pulse laser deposition and deposited on glass substrates at wavelength 1064nm wavelength with a various laser energies (200,300,400,500)nm. The study of atomic force microscope (AFM) and X-ray diffraction as well as the effect of changing the laser energy on the structural properties has been studied. It has been observed that the membrane formed is of the polycrystalline type and the predominant phase is the plane (111) and (200). The minimum grain size obtained was 16.5 nm at a laser energy about 200 mJ. The results showed that thin films of average granular sizes (75 nm) could be prepared.As for the optical properties,
... Show MoreWe report here the observation of 16 µm superradiance laser action generated from optical pumping of CF4 gas molecules (which is cooled to 140 Kº by a boil-off liquid-N2) by a TEA-CO2 laser 9R12 line. Output laser pulses of 7 mJ and 200 ns have been obtained.
In this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Sq
... Show More