Photonic crystal fiber interferometers (PCFIs) are widely used for sensing applications. This work presented solid core-PCFs based on Mach-Zehnder modal interferometer for sensing refractive index. The general structure of sensor was applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28).To apply modal interferometer theory collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). A high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted wavelength. This work studied a Mach-Zahnder interferometer refractive index sensor based on splicing point tapered SMF-PCF-SMF. Relation between refractive index sensitivity and taper waist diameter were studied through simulation and experiments. The experimental and simulation results show that sensitivity would be increased with a decrease of taper waist diameter. The response of the PCFI is observed for a range of refractive index values from (1.33 to 1.38). When the length of PCF was (4)cm with different taper waist diameter (125,107,90,60)μm, the maximum refractive index sensitivity of (20 pm / RIU) was achieved. When taper waist diameter became (60)μm, the rate of increase in sensitivity was 12.4% compared with the taper waist diameter (125)μm.
Orthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show MoreRecent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T
... Show MoreCryptography is a major concern in communication systems. IoE technology is a new trend of smart systems based on various constrained devices. Lightweight cryptographic algorithms are mainly solved the most security concern of constrained devices and IoE systems. On the other hand, most lightweight algorithms are suffering from the trade-off between complexity and performance. Moreover, the strength of the cryptosystems, including the speed of the algorithm and the complexity of the system against the cryptanalysis. A chaotic system is based on nonlinear dynamic equations that are sensitive to initial conditions and produce high randomness which is a good choice for cryptosystems. In this work, we proposed a new five-dimensional of a chaoti
... Show MoreThe aim of this study was to determine the effect on using the McCarthy Model (4MAT) for developing creative writing skills and reflective thinking among undergraduate students. The quasi-experimental approach was adopted. And, in order to achieve the study objective, the educational content of Teaching Ethics (Approach 401), for the plan for the primary grades teacher preparation program was dealt with by using a teaching program based on the McCarthy Model (4MAT) was used.
The study which was done had been based on the academic achievement test for creative writing skills, and the reflective thinking test. The validity and reliability of the study tools were also confirmed. The study was applied to a sample consisting of
... Show MoreAbstruct
This recearch is about studying the novel (doorstep’s women) by the Iraqi
narrator Hadia Hussian, and I choose Semiolog as a Curriculum for this
critical approach, because I think that this Semiotic curriculum has the ability
to read the Subjects and the narrative constructions. Which form the structure
of the novel starting from the little to the characters.
The focus is on many narrative constructions in the novel we have
studied the semiology of the tittle, the semiology of the cover, of the color, the
names of the characters and the semiology of the female characters.
First the focus of the novel is on the women’s characters because most
of it’s characters are women. Secondly because these
This study aims to find out the effectiveness of a cognitive-behavioral counseling program in enhancing self-management in reducing the academic procrastination of tenth-grade male students. The sample consisted of (26) male students divided into an experimental group of (13) students and a control group of (13) students. Two scales of self-management and academic procrastination were used, prepared by the researcher. The counseling program was prepared by the researcher. The results showed the program's effectiveness in enhancing self-management and reducing academic procrastination in the posttest, as it showed the continuation of this enhancement in self-management and the increase in the reduction of procrastination in the follow-up
... Show MoreNowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show More