Abstract: The use of indirect, all-ceramic restorations has grown in popularity among dentists. Studies have demonstrated that for indirect ceramic restorations to be effective over time, cement and ceramic must be bonded in a stable manner. Chemical, mechanical, and laser irradiation are among the methods used to precondition ceramic surfaces in order to increase bond strength.The objective of the study: This study was performed to investigate the roughness values and surface topography of lithium disilicate glass-ceramic treated with conventional methods and different Er,Cr:YSGG, and fractional CO2 laser conditioning parameters.Material and methods: Sixty samples of lithium disilicate glass-ceramic were divided as follows: 1- (n = 10) untreated; 2- (n = 10) Hydrofluoric acid etched; 3- (n = 10) conditioned by Er,Cr: YSGG laser at (7 W, 25 Hz, 50/50% Water/Air, pulse duration 60 us, irradiation time 2 min); 4- (n = 10) conditioned by Er,Cr:YSGG laser at (5 W, 25 Hz, 50/50% Water/Air, pulse duration 60 us, irradiation time 2 min); 5- (n = 10) conditioned by fractional CO2 laser at (power 8 W, pulse duration 10 ms); 6- (n = 10) conditioned by fractional CO2 laser at (power 6 W, pulse duration 10 ms). Then evaluated by: Profilometer, and scanning electron microscopy.Results: The highest roughness values were found in CO2 laser power 8 W treated samples, followed by Er,Cr:YSGG laser power 7W treated samples. The hydrofluoric acid-etched samples showed roughness values comparable to those of CO2 laser-irradiated samples with a power of 6 W. The untreated sample showed the smoothest surface with the lowest roughness value.Conclusion: The application of Er,Cr:YSGG, fractional CO2 lasers enhances the surface roughness of lithium disilicate samples positively, showing the promised results of using these parameters in bonding procedures.
Groundwater quality deterioration due to anthropogenic natural activities and its immense utilization in various sectors is considered a great concern. The aim of this study is to determine the groundwater quality parameters at various sources in and around Dhaka city and compare them with Bangladesh drinking water standards. In this study, six groundwater quality parameters (pH, DO, COD, TS, TDS, and arsenic) and ten groundwater samples are analyzed to determine the water quality. The collected samples have maximum and minimum pH values of 6.9 and 6.4, respectively. Maximum and minimum DO values are 0.3 and 0.1 mg/L, respectively. The arsenic concentration is 0 mg/L for all collected groundwater samples. The maximum and minimum COD
... Show MoreErbil city is located in the northern Iraq with a population of over one million people. Due to water crises farmers usually use wastewater and well water for the agricultural production. In this study six stations were designed to sample waste water and three from well water to define waste water and ground water characteristics. In this study, Residual Na+ Carbonate, Mg++ hazard, salinity hazard, Kelley index, %sodium, total hardness, permeability index, potential salinity, sodium adsorption ratio, and Irrigation Water Quality Index (IWQI) were determined. The order of average cation concentrations in water was Mg2+> Ca2+ > Na+ > K+. While the proportion of main
... Show MoreThis study examines experimentally the performance of a horizontal triple concentric tube heat exchanger TCTHE made of copper metal using water as cooling fluid and oil-40 as hot fluid. Hot fluid enters the inner annular tube of the TCTHE in a direction at a temperature of 50, 60 and 70 oC and a flow rate of 20 l/hr. On the other hand, the cooling fluid enters the inner tube and the outer annular tube in the reverse direction (counter current flow) at a temperature of 25 oC and flow rates of 10, 15, 20, 25, 30 and 35 l/hr. The TCTHE is composed of three copper tubes with outer diameters of 34.925 mm, 22.25 mm, and 9.525 mm, and thicknesses of 1.27 mm, 1.143 mm, and 0.762 mm, respectively. TCTHE tube's length was 670
... Show MoreIn this study, synthesis of polymer Nanocomposites through the blending of prepared polymers with polyvinyl alcohol (a synthetic polymer) or chitosan (a natural polymer) then mixed with nano oxide silica by many steps. The new compound [I] was obtained via reaction of 3,3’-dimethoxybiphenyl-4,4’-diamine as starting material with malic anhydride in DMF then treatment with ammonium persulfate (NH4 )2 S2 O8 (as the initiator) in order to produce polymer [II]. Also, we prepared new polymers [III-V] by using the same starting material (3,3’-dimethoxybiphenyl-4,4’-diamine) with glutaric acid or adipic acid or isophthalic acid in DMF and pyridine. In this study, new polymer blending [VI-IX] and [X-XIII] were synthesized from a prepared pol
... Show MoreAbstract: Chalcones were used to synthesis series of 2-pyrazoline derivatives and evaluated their antimicrobial and anti-inflammatory activities (E)-1,3-diphenylprop-2-en-1-one (1-5) were synthesized by Claisen-Schmidt Condensation method through the reaction of acetophenone with five various para substituted benzaldehyde in presence of KOH, the reaction monitoring by TLC and the result intermediates were checked by melting point and FT-IR Various 2-Pyrazoline derivatives were prepared by one pot reaction that involved the refluxing of (E)-1,3-diphenylprop-2-en-1-one (1–5) and Hydrazine monohydrate in the presence of glacial acetic acid for 24 hours at a temperature of (45–50) °C fo
... Show MoreAdvancing the multi-scale performance of asphalt pavements requires innovative binder modifications that address limitations in rutting resistance, fatigue resistance, and durability across the binder, mixture, and structural levels. This study evaluates the performance of asphalt cement, mixtures, and pavement systems modified with a combination of polyethylene (PE) and carbon nanotubes (CNTs). The binder was modified using 4% PE and varying CNT contents (0.5%, 1%, 1.5%, and 2% by weight of the modified binder). Binder performance was assessed through conventional and rheological tests, including penetration, softening point, viscosity, performance grade (PG) evaluation, and master curve analysis. Mixture-level performance was eval
... Show MoreEngineering equipment is essential part in the construction project and usually manufactured with long lead times, large costs and special engineering requirements. Construction manager targets that equipment to be delivered in the site need date with the right quantity, appropriate cost and required quality, and this entails an efficient supplier can satisfy these targets. Selection of engineering equipment supplier is a crucial managerial process .it requires evaluation of multiple suppliers according to multiple criteria. This process is usually performed manually and based on just limited evaluation criteria, so better alternatives may be neglected. Three stages of survey comprised number of public a
... Show MoreAn extensive program of laboratory testing was conducted on ring footing rested on gypseous soil brought from the north of Iraq (Salah El-Deen governorate) with a gypsum content of 59%. There are limited researches available, and even fewer have been done experimentally to understand how to ring footings behave; almost all the previous works only concern the behavior of ring footing under vertical loads, Moreover, relatively few studies have examined the impact of eccentric load and inclined load on such footing. In this study, a series of tests, including dry and wet tests, were carried out using a steel container (600×600×600) mm, metal ring footing (100 mm outer diameter and 40 mm inner diameter) was placed in the m
... Show More