The Bartholin gland cyst is a condition that occurs in approximately 2% of women, most of whom are of reproductive age. Although benign pathology, it is associated with significant patient discomfort. This disorder is caused by the obstruction and consequent dilation of the cyst duct. Definitive treatment involves the surgical removal of the entire cyst. Other alternative treatments include Marsupialization, Word catheter, and the use of CO2 laser. CO2 laser can be used either to vaporize or to excise the Bartholin gland cyst. The Objectives: The purpose of the study was to evaluate the efficacy and safety of (10600nm) CO2 laser in the treatment of Bartholin gland cyst. Patients, Materials & Methods: This study was done in laser medicine research clinics from July 2015 to the end of December 2015; 10 female patients whose ages ranged from 25 years to 50 years and who have Bartholin cyst. The details of the procedure were explained verbally to the patients and consent was written. Patients were examined and evaluated clinically and prepared for surgery. A CO2 continuous wave 1-40W laser emitted at 10600 nm. The laser is delivered via an articulated arm and laser is used to incise the cyst wall and vaporize the inner surface of the cyst. Results: The preliminary clinical findings included sufficient hemostasis, vaporization properties and precise incision margin with all of the surgical procedure. The postoperative advantages, i.e., lack of pain, bleeding, infection, good wound healing and overall satisfaction were observed. Conclusion: The clinical application of the CO2 (10600 nm) laser in surgical procedures can be considered practical, effective, easy to use and offers a safe, acceptable, and impressive alternative for conventional techniques of surgical treatment Bartholin gland cyst.
Femtosecond laser pulse propagation in monomode optical fibers is demonstrated and investigated numerically (by simulations) and experimentally in this paper. A passively mode locked Nd:glass laser giving a pulse duration of about 200 fsec at 1053 nm wavelength and 120 mW average optical power with 100 MHz repetition rate is used in the experimental work. Numerical simulations are done by solving the nonlinear Schrödinger equation with the aid of Matlab program. The results show that self phase modulation (SPM) leads to compression of the spectral width from 5 nm to 2.1 nm after propagation of different optical powers (34, 43, 86 and 120 mW) in fibers of different length (5, 15, 35 m). The varying optical powers produced a varying
... Show MorePumping a BBO crystal by a violet diode laser with a wavelength of (405 nm) output power of (24 mW) and a line width of (3nm) was employed to generate entangled photons with a wavelength of 810 nm by achieving type II phase matching conditions.The coincidence count rate obtained in this experiment was in the range of (18000) counts/s. Two BBO crystals with different thicknesses of (4 mm and 2 mm) were tested, where maximum count rates of about (18000) counts/s was obtained with a (5*5*2) mm BBO crystal where the short coherence time for the pumping source was tolerated by using shorter BBO crystals. Also, the effect of compensating crystal on the walk-off effect was studied. The coincidence count rates were increased by using these crystal
... Show MoreThe research is concerned about studying the absorption spectrum of the solution coumarin dye C47. The chloroform solvent was used with C47 dye in three different concentrations 10-4, 10-5 and 10-6 M. The laser dye solution was prepared by dissolving the required amount of dye in chloroform alcohol, while studying absorption spectrum before and after irradiation with gamma ray by cobalt-60 source 60Co at exposure time, which are 0, 4, 6 and 18 hours with different absorbed doses 0, 136, 204 and 612 Gy. The results show that red shift in the absorption spectrum was increased by increasing the concentration of laser dye solutions , while the increase of gamma dose led to increase the red shift after irradiation, as the exposure period and irr
... Show MoreThis paper presents on the design of L-Band Multiwavelength laser for Hybrid Time Division Multiplexing/ Wavelength Division Multiplexing (TDM/WDM) Passive Optical Network (PON) application. In this design, an L-band Mulltiwavelength Laser is designed as the downstream signals for TDM/WDM PON. The downstream signals ranging from 1569.865 nm to 1581.973 nm with 100GHz spacing. The multiwavelength laser is designed using OptiSystem software and it is integrated into a TDM/WDM PON that is also designed using OptiSystem simulation software. By adapting multiwavelength fiber laser into a TDM/WDM network, a simple and low-cost downstream signal is proposed. From the simulation design, it is found that the proposed design is suitable to be used
... Show MoreIn this work, the spectra of plasma glow produced by Nd:YAG laser operated at 1.064 μm on Al-Mg alloys with same molar ratio samples in air were analyzed by comparing the atomic lines of aluminum and magnesium with that of strong standard lines. The effect of laser energies on spectral lines, produced by laser ablation, were investigated using optical spectroscopy, the electron density was measured utilizing the Stark broadening of magnesium-aluminum lines and the electron temperature was calculated from the standard Boltzmann plot method. The results that show the electron temperature increases in magnesium and aluminum targets but decreases in magnesium: aluminum alloy target, also show the electron density increase all the aluminum,
... Show MoreThe aim of this research is to design and construct a semiconductor laser range finder
operating in the near infrared range for ranging and designation. The main part of the range finder is the
transmitter which is a semiconductor laser type GaAs of 0.904 mm wavelength with a beam expander,
and the receiver with its collecting optics. The characteristics of transmitter pulse width were 200ns and
threshold current 10 Amp. and maximum operating current 38 Amp. The repetition rate was set at 660 Hz
and maximum output power about 1 watt. The divergence of the beam was 0.268o. A special computer
code was used for optimum optical design and laser spot size analysis and for calculation of atmosphere
attenuation.
Nanoparticle has pulled in expanding consideration with the developing enthusiasm for nanotechnology which hold potential as essential segments for development applications. In the present work, a copper nanoparticle is manufactured as a suspension in distilled water by beating a bulk copper target with laser source (532 nm wavelength, 10 ns pulse duration and 10 Hz repletion rate) via method. UV- visible absorption spectra and AFM analysis has been done to observe the effect of repetition rate for the pulsation of laser. Copper nanoparticles (Cu-NPs) were successfully synthesized with green color. The Cu- NPs have very high purity because the preparation was managed in aqueous media to eliminate ambient contaminations. Absorption
... Show MoreThis research focuses on improvement of the corrosion behaviour of commercial pure titanium (Ti) grade II when exposed to Hank’s solution through different surface treatments. The disc shape of titanium samples were constructed to be divided according to their surface treatment. The first experimental group the Ti sample was exposed to computer numerical control (CNC) fiber laser machine. Whereas, the other experimental group the Ti sample was only coated with Polyetherketon keton (PEKK) by using carbon dioxide (CO2) laser technique while the last experimental group the Ti sample was treated with CNC fiber laser followed by PEKK coating by using CO2 laser technique. All were compared with the untreated control group. The electrochemical a
... Show MoreThe objective of the present study is to verify the actual carious lesion depth by laser
fluorescence technique using 650 nm CW diode laser in comparison with the histopathological
investigation. Five permanent molar teeth were extracted from adult individuals for different reasons
(tooth impaction, periodontal diseases, and pulp infections); their ages were ranging from 20-25 years
old. Different carious teeth with varying clinical stages of caries progression were examined. An
experimental laser fluorescence set-up was built to perform the work regarding in vitro detection and
quantification of occlusal dental caries and the determination of its actual clinical carious lesion depth by
650 nm CW diode laser (excitat