The Bartholin gland cyst is a condition that occurs in approximately 2% of women, most of whom are of reproductive age. Although benign pathology, it is associated with significant patient discomfort. This disorder is caused by the obstruction and consequent dilation of the cyst duct. Definitive treatment involves the surgical removal of the entire cyst. Other alternative treatments include Marsupialization, Word catheter, and the use of CO2 laser. CO2 laser can be used either to vaporize or to excise the Bartholin gland cyst. The Objectives: The purpose of the study was to evaluate the efficacy and safety of (10600nm) CO2 laser in the treatment of Bartholin gland cyst. Patients, Materials & Methods: This study was done in laser medicine research clinics from July 2015 to the end of December 2015; 10 female patients whose ages ranged from 25 years to 50 years and who have Bartholin cyst. The details of the procedure were explained verbally to the patients and consent was written. Patients were examined and evaluated clinically and prepared for surgery. A CO2 continuous wave 1-40W laser emitted at 10600 nm. The laser is delivered via an articulated arm and laser is used to incise the cyst wall and vaporize the inner surface of the cyst. Results: The preliminary clinical findings included sufficient hemostasis, vaporization properties and precise incision margin with all of the surgical procedure. The postoperative advantages, i.e., lack of pain, bleeding, infection, good wound healing and overall satisfaction were observed. Conclusion: The clinical application of the CO2 (10600 nm) laser in surgical procedures can be considered practical, effective, easy to use and offers a safe, acceptable, and impressive alternative for conventional techniques of surgical treatment Bartholin gland cyst.
The adsorption of Pb(II) ions onto bentonite and activated carbon was investigated. The effects of pH, initial adsorbent dosage, contact time and temperature were studied in batch experiments. The maximum adsorption capacities for bentonite and activated carbon were 0.0364 and 0.015 mg/mg, respectively. Thermodynamic parameters such as Gibbs free energy change, Enthalpy change and Entropy change have been calculated. These thermodynamic parameters indicated that the adsorption process was thermodynamically spontaneous under natural conditions and the adsorption was endothermic in nature. Experimental data were also tested in terms of adsorption kinetics, the results showed that the adsorption processes followed well pseudo second- order
... Show MoreIn this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and S
... Show MoreBackground: Rheumatoid arthritis is a chronic inflammatory autoimmune disease characterized by joint inflammation, involvement of exocrine salivary and lacrimal glands may occur as extra-articular mani¬festations in this disease. This study aimed to provide evidence of altered in function and composition of salivary gland in patients with rheumatoid arthritis by determine salivary flow rate and some biochemical parameters(total protein, amylase, peroxidase) and to investigate the relationship between disease activity and changes in function and composition of salivary gland. Materials and Methods: Fifty five patients with RA (7 males and 48 females) were enrolled in this study with age range (20-69) years. The patients were separated int
... Show MoreWe have investigated the impact of laser pulse wavelength on the quantity of ablated materials. Specifically, this study investigated the structural, optical, and morphological characteristics of tungsten trioxide (WO3) nanoparticles (NPs) that were synthesized using the technique of pulsed-laser ablation of a tungsten plate. A DD drop of water was used as the ablation environment at a fixed fluence at 76.43 J/cm2 and pulse number was 400 pulses of the laser. The first and second harmonic generation ablations were carried out, corresponding to wavelengths of 1064 and 532 nm, respectively. The Q-switched Nd: YAG laser operates at a repetition rate of 1 Hz and has a pulse width of roughly 15 ns. These parameters are applicable to both wavelen
... Show More
The research aims to identify the magnitude of the impact of external debt on the gross domestic product in Morocco, and the importance of research lies in the role that external debt plays in addressing structural imbalances, if it is best disposed of according to well-studied economic plans by specialists in this regard, especially if these debts are directed with Other resources, as it helps pay the costs of these debts (debt servicing) that the external debt also raises the level of gross domestic product, and the research starts from the hypothesis that: There is an effect of foreign debt on the GDP in Morocco, has contributed in one way or another to The exacerbation of the external debt, which affected the m
... Show MoreMetal enhanced fluorescence (MEF) is an unequaled phenomenon of metal nanoparticle surface plasmons, when light interacts with the metal nanostructures (silver nanoparticles) which result electromagnetic fields to promote the sensitivity of fluorescence. This work endeavor to study the influence of silver nanoparticles on fluorescence intensity of Fluoreseina dye by employment mixture solution with different mixing ratio. Silver nanoparticles had been manufactured by the chemical reduction method so that Ag NP layer coating had been done by hot rotation liquid method. The optical properties of the prepared samples (mixture solution of Fluoreseina dye solutions and colloidal solution with 5 minutes prepared of Ag NPs) tested by using UV-V
... Show MoreRadial density distribution function of one particle D(r1) was calculated for main orbital of carbon atom and carbon like ions (N+ and B- ) by using the Partitioning technique .The results presented for K and L shells for the Carbon atom and negative ion of Boron and positive ion for nitrogen ion . We observed that as atomic number increases the probability of existence of electrons near the nucleus increases and the maximum of the location r1 decreases. In this research the Hartree-fock wavefunctions have been computed using Mathcad computer software .
This research study the effect of Titanium dioxide on the tensile properties of
Polystyrene (PS) and Polycarbonate (PC) polymers. The stress – strain curve for pure PS
and pure PC, shows that Young modulus for PS is higher than Young modulus for PC,
because PS have higher ultimate strength than PC.
The addition of TiO2 to PS and PC will reduce the Young modulus and ultimate stress,
because the TiO2 particles will reduces or freeze the orientation of these molecular chain
and reduced the toughness of PC, while when the TiO2 were added to PS, the value of
toughness will be stabilized because TiO2 particles make these chains interlocked and the
mobility of the chains will be restrict.