Abstract :H.pylori is an important cause of gastric duodenal disease, including gastric ulcers, Mucosa-associated lymphoid tissue (MALT), and gastric carcinoma. biosensors are becoming the most extensively studied discipline because the easy, rapid, low-cost, highly sensitive, and highly selective biosensors contribute to advances in next-generation medicines such as individualized medicine and ultrasensitive point-of-care detection of markers for diseases. Five of ten patients diagnosed with H.pylori ranging in age from 15–85 participated in this research. who [gastritis, duodenitis, duodenal ulcer (DU), and peptic ulcer (PU)] Suspected H.pylori colonies were identified by the presence of urease, catalase, oxidase activity, and PCR. All parameters are fixed: Laser power:40 mW, size of drops:25 μ, Turbidity:0.5. , Multi modes optical fiber, and Coreless optical fiber to construct optical biosensor (Multimode-Coreless-Multimode) optical fibers based on an inline Mach-Zehnder Interferometer. All samples had a sensitivity. Multimode-Coreless-Multimode optical Biosensor: is a rapid and sensitive method for the detection of H.pylori bacteria.
Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show MoreA total of 50 fertile human hydatid cases {33(66%) females and (34%) males}, obtained from Al-Ramadi public Hospital during the period from December 2003 to July 2004 were examined to study any bacterial infections. The specimens were obtained from hydatid fluid and then cultured on appropriate culture media to distinguish some species of bacteria which resulted in obtaining: Staphylococcus aureus (18%), Pseudomonas aeruginosa(12%), Escherichia coli(6%) and Streptococcus pneumonia (4%). These bacteria were confirmed by isolation from interacyst fluid and blood culture technique. The possible routs of infection may be through blood, biliary ducts and bronchioles .The selectivity permeable of the cyst wall may be absent and that may allow
... Show MoreMyriophyllum spicatum distribution in Al-Burgga marsh, Hor Al-Hammar was described in relation to some of the physical-chemical properties for its habitat (water depth, light penetration, water temperature, water salinity, pH, dissolved oxygen, Ca+2, Mg+2, reactive NO2=, reactive NO3-1, and reactive PO4-3) during 2011, seasonally. CANOCO ordination program (CCA) was used to analyse the data. Its vegetation cover percentage was with its peak at summer, its value was 90 %, while the lowest value was 20 % in winter. Statistically, Positive relationships for WT, sal., Ca+2, Mg+2, reactive NO2=, reactive NO3-1, and reactive PO4-3 with the vegetation cover percentage were observed. While, negative relationships for WD, pH, and DO with the ve
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreThe aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreThis paper proposes a neuro-fuzzy system to model β-glucosidase activity based on the reaction’s pH level and temperature. The developed fuzzy inference system includes two input variables (pH level and temperature) and one output (enzyme activity). The multi-input fuzzy inference system was developed in two stages: first, developing a single input-single output fuzzy inference system for each input variable (pH, temperature) separately, using the robust adaptive network-based fuzzy inference system (ANFIS) approach. The neural network learning techniques were used to tune the membership functions based on previously published experimental data for β-glucosidase. Second, each input’s optimized membership functions from the ANF
... Show More